Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeda Unicode version

Theorem cdlemeda 29755
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma.  D represents s2. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemeda.l  |-  .<_  =  ( le `  K )
cdlemeda.j  |-  .\/  =  ( join `  K )
cdlemeda.m  |-  ./\  =  ( meet `  K )
cdlemeda.a  |-  A  =  ( Atoms `  K )
cdlemeda.h  |-  H  =  ( LHyp `  K
)
cdlemeda.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdlemeda  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  D  e.  A )

Proof of Theorem cdlemeda
StepHypRef Expression
1 cdlemeda.d . 2  |-  D  =  ( ( R  .\/  S )  ./\  W )
2 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
3 simp31 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  e.  A )
4 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  e.  A )
5 cdlemeda.j . . . . . 6  |-  .\/  =  ( join `  K )
6 cdlemeda.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6hlatjcom 28825 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  =  ( S 
.\/  R ) )
82, 3, 4, 7syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  S
)  =  ( S 
.\/  R ) )
98oveq1d 5835 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( R  .\/  S )  ./\  W )  =  ( ( S 
.\/  R )  ./\  W ) )
10 simp1r 982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  W  e.  H )
11 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  S  .<_  W )
12 simp32 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  .<_  ( P  .\/  Q ) )
13 simp33 995 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
14 cdlemeda.l . . . . . 6  |-  .<_  =  ( le `  K )
15 cdlemeda.h . . . . . 6  |-  H  =  ( LHyp `  K
)
1614, 5, 6, 15cdlemesner 29753 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  =/=  R )
172, 3, 4, 12, 13, 16syl122anc 1193 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  =/=  R )
18 cdlemeda.m . . . . 5  |-  ./\  =  ( meet `  K )
1914, 5, 18, 6, 15lhpat 29500 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  S  =/=  R ) )  ->  ( ( S 
.\/  R )  ./\  W )  e.  A )
202, 10, 4, 11, 3, 17, 19syl222anc 1200 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( S  .\/  R )  ./\  W )  e.  A )
219, 20eqeltrd 2359 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( R  .\/  S )  ./\  W )  e.  A )
221, 21syl5eqel 2369 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  D  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   lecple 13210   joincjn 14073   meetcmee 14074   Atomscatm 28721   HLchlt 28808   LHypclh 29441
This theorem is referenced by:  cdlemednpq  29756  cdleme19d  29763  cdleme20aN  29766  cdleme20c  29768  cdleme20f  29771  cdleme20g  29772  cdleme20j  29775  cdleme20l1  29777  cdleme20l2  29778
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-lhyp 29445
  Copyright terms: Public domain W3C validator