Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemedb Unicode version

Theorem cdlemedb 29653
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma.  D represents s2. (Contributed by NM, 20-Nov-2012.)
Hypotheses
Ref Expression
cdlemeda.l  |-  .<_  =  ( le `  K )
cdlemeda.j  |-  .\/  =  ( join `  K )
cdlemeda.m  |-  ./\  =  ( meet `  K )
cdlemeda.a  |-  A  =  ( Atoms `  K )
cdlemeda.h  |-  H  =  ( LHyp `  K
)
cdlemeda.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdlemedb.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdlemedb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  D  e.  B )

Proof of Theorem cdlemedb
StepHypRef Expression
1 cdlemeda.d . 2  |-  D  =  ( ( R  .\/  S )  ./\  W )
2 hllat 28720 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
32ad2antrr 709 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  Lat )
4 simpll 733 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  K  e.  HL )
5 simprl 735 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  R  e.  A )
6 simprr 736 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  S  e.  A )
7 cdlemedb.b . . . . 5  |-  B  =  ( Base `  K
)
8 cdlemeda.j . . . . 5  |-  .\/  =  ( join `  K )
9 cdlemeda.a . . . . 5  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 28723 . . . 4  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  B )
114, 5, 6, 10syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( R  .\/  S
)  e.  B )
12 cdlemeda.h . . . . 5  |-  H  =  ( LHyp `  K
)
137, 12lhpbase 29354 . . . 4  |-  ( W  e.  H  ->  W  e.  B )
1413ad2antlr 710 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  W  e.  B )
15 cdlemeda.m . . . 4  |-  ./\  =  ( meet `  K )
167, 15latmcl 14119 . . 3  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  B  /\  W  e.  B )  ->  (
( R  .\/  S
)  ./\  W )  e.  B )
173, 11, 14, 16syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  -> 
( ( R  .\/  S )  ./\  W )  e.  B )
181, 17syl5eqel 2342 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A ) )  ->  D  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   ` cfv 4673  (class class class)co 5792   Basecbs 13110   lecple 13177   joincjn 14040   meetcmee 14041   Latclat 14113   Atomscatm 28620   HLchlt 28707   LHypclh 29340
This theorem is referenced by:  cdleme20k  29675  cdleme20l2  29677  cdleme20l  29678  cdleme20m  29679
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-ov 5795  df-lat 14114  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-lhyp 29344
  Copyright terms: Public domain W3C validator