Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr32fva1 Unicode version

Theorem cdlemefr32fva1 29849
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefr27.b  |-  B  =  ( Base `  K
)
cdlemefr27.l  |-  .<_  =  ( le `  K )
cdlemefr27.j  |-  .\/  =  ( join `  K )
cdlemefr27.m  |-  ./\  =  ( meet `  K )
cdlemefr27.a  |-  A  =  ( Atoms `  K )
cdlemefr27.h  |-  H  =  ( LHyp `  K
)
cdlemefr27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefr27.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdlemefr27.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme29fr.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme29fr.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
Assertion
Ref Expression
cdlemefr32fva1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( F `  R )  =  [_ R  /  s ]_ N )
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s, z    H, s    K, s    x, z, A, s    B, s, x, z    z, H   
x,  .\/ , z    z, K   
x,  .<_ , z    x,  ./\ , z    x, N, z    z, P   
z, Q    x, R, z    x, W, z    x, P    x, Q
Allowed substitution hints:    C( x, z, s)    U( x, z)    F( x, z, s)    H( x)    I( x, z, s)    K( x)    N( s)    O( x, z, s)

Proof of Theorem cdlemefr32fva1
StepHypRef Expression
1 cdlemefr27.b . 2  |-  B  =  ( Base `  K
)
2 cdlemefr27.l . 2  |-  .<_  =  ( le `  K )
3 cdlemefr27.j . 2  |-  .\/  =  ( join `  K )
4 cdlemefr27.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemefr27.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemefr27.h . 2  |-  H  =  ( LHyp `  K
)
7 breq1 4000 . . 3  |-  ( s  =  R  ->  (
s  .<_  ( P  .\/  Q )  <->  R  .<_  ( P 
.\/  Q ) ) )
87notbid 287 . 2  |-  ( s  =  R  ->  ( -.  s  .<_  ( P 
.\/  Q )  <->  -.  R  .<_  ( P  .\/  Q
) ) )
9 simp11 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
10 simp12l 1073 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  P  e.  A )
11 simp13l 1075 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  Q  e.  A )
12 simp3l 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  -> 
s  e.  A )
13 simp3rr 1034 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  -.  s  .<_  ( P 
.\/  Q ) )
14 simp2 961 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  P  =/=  Q )
15 cdlemefr27.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
16 cdlemefr27.c . . . 4  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
17 cdlemefr27.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
181, 2, 3, 4, 5, 6, 15, 16, 17cdlemefr27cl 29842 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
s  e.  A  /\  -.  s  .<_  ( P 
.\/  Q )  /\  P  =/=  Q ) )  ->  N  e.  B
)
199, 10, 11, 12, 13, 14, 18syl33anc 1202 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  N  e.  B )
201, 2, 3, 4, 5, 6, 15, 16, 17cdlemefr32snb 29844 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  [_ R  /  s ]_ N  e.  B )
21 cdleme29fr.o . 2  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
22 cdleme29fr.f . 2  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
231, 2, 3, 4, 5, 6, 8, 19, 20, 21, 22cdlemefrs32fva1 29840 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( F `  R )  =  [_ R  /  s ]_ N )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   [_csb 3056   ifcif 3539   class class class wbr 3997    e. cmpt 4051   ` cfv 4673  (class class class)co 5792   iota_crio 6263   Basecbs 13111   lecple 13178   joincjn 14041   meetcmee 14042   Atomscatm 28703   HLchlt 28790   LHypclh 29423
This theorem is referenced by:  cdlemefr31fv1  29850
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-lines 28940  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427
  Copyright terms: Public domain W3C validator