Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr32fvaN Unicode version

Theorem cdlemefr32fvaN 29877
Description: Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr27.b  |-  B  =  ( Base `  K
)
cdlemefr27.l  |-  .<_  =  ( le `  K )
cdlemefr27.j  |-  .\/  =  ( join `  K )
cdlemefr27.m  |-  ./\  =  ( meet `  K )
cdlemefr27.a  |-  A  =  ( Atoms `  K )
cdlemefr27.h  |-  H  =  ( LHyp `  K
)
cdlemefr27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefr27.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdlemefr27.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme29fr.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
Assertion
Ref Expression
cdlemefr32fvaN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  [_ R  /  x ]_ O  = 
[_ R  /  s ]_ N )
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s, z    H, s    K, s    x, z, A, s    B, s, x, z    z, H   
x,  .\/ , z    z, K   
x,  .<_ , z    x,  ./\ , z    x, N, z    z, P   
z, Q    x, R, z    x, W, z
Allowed substitution hints:    C( x, z, s)    P( x)    Q( x)    U( x, z)    H( x)    I( x, z, s)    K( x)    N( s)    O( x, z, s)

Proof of Theorem cdlemefr32fvaN
StepHypRef Expression
1 cdlemefr27.b . 2  |-  B  =  ( Base `  K
)
2 cdlemefr27.l . 2  |-  .<_  =  ( le `  K )
3 cdlemefr27.j . 2  |-  .\/  =  ( join `  K )
4 cdlemefr27.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemefr27.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemefr27.h . 2  |-  H  =  ( LHyp `  K
)
7 breq1 4027 . . 3  |-  ( s  =  R  ->  (
s  .<_  ( P  .\/  Q )  <->  R  .<_  ( P 
.\/  Q ) ) )
87notbid 285 . 2  |-  ( s  =  R  ->  ( -.  s  .<_  ( P 
.\/  Q )  <->  -.  R  .<_  ( P  .\/  Q
) ) )
9 simp11 985 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
10 simp12l 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  P  e.  A )
11 simp13l 1070 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  Q  e.  A )
12 simp3l 983 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  -> 
s  e.  A )
13 simp3rr 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  -.  s  .<_  ( P 
.\/  Q ) )
14 simp2 956 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  P  =/=  Q )
15 cdlemefr27.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
16 cdlemefr27.c . . . 4  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
17 cdlemefr27.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
181, 2, 3, 4, 5, 6, 15, 16, 17cdlemefr27cl 29871 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A )  /\  (
s  e.  A  /\  -.  s  .<_  ( P 
.\/  Q )  /\  P  =/=  Q ) )  ->  N  e.  B
)
199, 10, 11, 12, 13, 14, 18syl33anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) ) )  ->  N  e.  B )
201, 2, 3, 4, 5, 6, 15, 16, 17cdlemefr32snb 29873 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  [_ R  /  s ]_ N  e.  B )
21 cdleme29fr.o . 2  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
221, 2, 3, 4, 5, 6, 8, 19, 20, 21cdlemefrs32fva 29868 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  [_ R  /  x ]_ O  = 
[_ R  /  s ]_ N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   [_csb 3082   ifcif 3566   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   iota_crio 6291   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   Atomscatm 28732   HLchlt 28819   LHypclh 29452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-lines 28969  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456
  Copyright terms: Public domain W3C validator