Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs32fva Unicode version

Theorem cdlemefrs32fva 29868
Description: Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT TODO: consolidate uses of lhpmat 29498 here and elsewhere, and presence/absence of  s 
.<_  ( P  .\/  Q
) term. Also, why can proof be shortened with cdleme29cl 29845? What is difference from cdlemefs27cl 29881? (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b  |-  B  =  ( Base `  K
)
cdlemefrs27.l  |-  .<_  =  ( le `  K )
cdlemefrs27.j  |-  .\/  =  ( join `  K )
cdlemefrs27.m  |-  ./\  =  ( meet `  K )
cdlemefrs27.a  |-  A  =  ( Atoms `  K )
cdlemefrs27.h  |-  H  =  ( LHyp `  K
)
cdlemefrs27.eq  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
cdlemefrs27.nb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
cdlemefrs27.rnb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
cdleme29frs.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
Assertion
Ref Expression
cdlemefrs32fva  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N
)
Distinct variable groups:    z, s, A    H, s    .\/ , s    K, s    .<_ , s    P, s    Q, s    R, s    W, s    ps, s    z, A    z, B    z, H    z, K    z, 
.<_    z, N    z, P    z, Q    z, R    z, W    ps, z    B, s   
z,  .\/    ./\ , s, z    ph, z    x, z, A   
x, B    x,  .\/    x, 
.<_    x,  ./\    x, N    x, s, R    x, W
Allowed substitution hints:    ph( x, s)    ps( x)    P( x)    Q( x)    H( x)    K( x)    N( s)    O( x, z, s)

Proof of Theorem cdlemefrs32fva
StepHypRef Expression
1 simp2rl 1024 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  R  e.  A )
2 cdlemefrs27.b . . . 4  |-  B  =  ( Base `  K
)
3 cdlemefrs27.a . . . 4  |-  A  =  ( Atoms `  K )
42, 3atbase 28758 . . 3  |-  ( R  e.  A  ->  R  e.  B )
5 cdleme29frs.o . . . 4  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
6 eqid 2284 . . . 4  |-  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )
75, 6cdleme31so 29847 . . 3  |-  ( R  e.  B  ->  [_ R  /  x ]_ O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
81, 4, 73syl 18 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  x ]_ O  =  ( iota_ z  e.  B A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
9 ssid 3198 . . . 4  |-  B  C_  B
109a1i 10 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  B  C_  B )
11 simpll 730 . . . . . . . 8  |-  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  -.  s  .<_  W )
12 simpr 447 . . . . . . . 8  |-  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
( s  .\/  ( R  ./\  W ) )  =  R )
1311, 12jca 518 . . . . . . 7  |-  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) )
1413imim1i 54 . . . . . 6  |-  ( ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  ->  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )
1514ralimi 2619 . . . . 5  |-  ( A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  ->  A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )
1615rgenw 2611 . . . 4  |-  A. z  e.  B  ( A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  ->  A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )
1716a1i 10 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  A. z  e.  B  ( A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  ->  A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )
18 cdlemefrs27.l . . . . 5  |-  .<_  =  ( le `  K )
19 cdlemefrs27.j . . . . 5  |-  .\/  =  ( join `  K )
20 cdlemefrs27.m . . . . 5  |-  ./\  =  ( meet `  K )
21 cdlemefrs27.h . . . . 5  |-  H  =  ( LHyp `  K
)
22 cdlemefrs27.eq . . . . 5  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
23 cdlemefrs27.nb . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
24 cdlemefrs27.rnb . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
252, 18, 19, 20, 3, 21, 22, 23, 24cdlemefrs29bpre1 29865 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  E. z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
26 simpl11 1030 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( K  e.  HL  /\  W  e.  H ) )
27 simpl2r 1009 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
28 simpl3 960 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ps )
29 simpr 447 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  s  e.  A )
302, 18, 19, 20, 3, 21, 22cdlemefrs29pre00 29863 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R ) ) )
3126, 27, 28, 29, 30syl31anc 1185 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  (
s  .\/  ( R  ./\ 
W ) )  =  R ) ) )
3231imbi1d 308 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( (
( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) )  <->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )
3332ralbidva 2560 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
3433rexbidv 2565 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( E. z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  E. z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
3525, 34mpbid 201 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  E. z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
362, 18, 19, 20, 3, 21, 22, 23, 24cdlemefrs29cpre1 29866 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  E! z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
37 riotass2 6328 . . 3  |-  ( ( ( B  C_  B  /\  A. z  e.  B  ( A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  ->  A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )  /\  ( E. z  e.  B  A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  /\  E! z  e.  B  A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )  ->  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  =  ( iota_ z  e.  B A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
3810, 17, 35, 36, 37syl22anc 1183 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  =  (
iota_ z  e.  B A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
392, 18, 19, 20, 3, 21, 22, 23cdlemefrs29bpre0 29864 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N
) )
40393ad2ant1 976 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  [_ R  /  s ]_ N  e.  B  /\  z  e.  B
)  ->  ( A. s  e.  A  (
( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) )  <->  z  =  [_ R  /  s ]_ N ) )
4140riota5OLD 6327 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  [_ R  /  s ]_ N  e.  B
)  ->  ( iota_ z  e.  B A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  =  [_ R  / 
s ]_ N )
4224, 41mpdan 649 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( iota_ z  e.  B A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  =  [_ R  /  s ]_ N
)
438, 38, 423eqtrd 2320 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545   E!wreu 2546   [_csb 3082    C_ wss 3153   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   iota_crio 6291   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   Atomscatm 28732   HLchlt 28819   LHypclh 29452
This theorem is referenced by:  cdlemefrs32fva1  29869  cdlemefr32fvaN  29877  cdlemefs32fvaN  29890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-lhyp 29456
  Copyright terms: Public domain W3C validator