Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs32fvaN Unicode version

Theorem cdlemefs32fvaN 30684
Description: Part of proof of Lemma E in [Crawley] p. 113. Value of  F at an atom not under  W. TODO: FIX COMMENT TODO: consolidate uses of lhpmat 30292 here and elsewhere, and presence/absence of  s 
.<_  ( P  .\/  Q
) term. Also, why can proof be shortened with cdleme27cl 30628? What is difference from cdlemefs27cl 30675? (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefs32.b  |-  B  =  ( Base `  K
)
cdlemefs32.l  |-  .<_  =  ( le `  K )
cdlemefs32.j  |-  .\/  =  ( join `  K )
cdlemefs32.m  |-  ./\  =  ( meet `  K )
cdlemefs32.a  |-  A  =  ( Atoms `  K )
cdlemefs32.h  |-  H  =  ( LHyp `  K
)
cdlemefs32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefs32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemefs32.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdlemefs32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme29fs.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
Assertion
Ref Expression
cdlemefs32fvaN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N
)
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z   
y, D    y, E    H, s, t, y    .\/ , s, t, x, y, z    K, s, t, y    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    x, N, z    P, s, t, y, z    Q, s, t, y, z    R, s, t, y    t, U, y    W, s, t, x, y, z    D, s    z, H    z, K    z, R, x
Allowed substitution hints:    C( x, y, z, t, s)    D( x, z, t)    P( x)    Q( x)    U( x, z, s)    E( x, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y, t, s)    O( x, y, z, t, s)

Proof of Theorem cdlemefs32fvaN
StepHypRef Expression
1 cdlemefs32.b . 2  |-  B  =  ( Base `  K
)
2 cdlemefs32.l . 2  |-  .<_  =  ( le `  K )
3 cdlemefs32.j . 2  |-  .\/  =  ( join `  K )
4 cdlemefs32.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemefs32.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemefs32.h . 2  |-  H  =  ( LHyp `  K
)
7 breq1 4028 . 2  |-  ( s  =  R  ->  (
s  .<_  ( P  .\/  Q )  <->  R  .<_  ( P 
.\/  Q ) ) )
8 simp1 955 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
9 simp3l 983 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  A )
10 simp3rl 1028 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  W )
119, 10jca 518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
12 simp3rr 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  .<_  ( P  .\/  Q
) )
13 simp2 956 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
14 cdlemefs32.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdlemefs32.d . . . 4  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
16 cdlemefs32.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
17 cdlemefs32.i . . . 4  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
18 cdlemefs32.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
191, 2, 3, 4, 5, 6, 14, 15, 16, 17, 18cdlemefs27cl 30675 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  N  e.  B )
208, 11, 12, 13, 19syl13anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  N  e.  B )
211, 2, 3, 4, 5, 6, 14, 15, 16, 17, 18cdlemefs32snb 30677 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  / 
s ]_ N  e.  B
)
22 cdleme29fs.o . 2  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
231, 2, 3, 4, 5, 6, 7, 20, 21, 22cdlemefrs32fva 30662 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  x ]_ O  =  [_ R  /  s ]_ N
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   [_csb 3083   ifcif 3567   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   iota_crio 6299   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   Atomscatm 29526   HLchlt 29613   LHypclh 30246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-lplanes 29761  df-lvols 29762  df-lines 29763  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250
  Copyright terms: Public domain W3C validator