Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemesner Unicode version

Theorem cdlemesner 29735
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemesner.l  |-  .<_  =  ( le `  K )
cdlemesner.j  |-  .\/  =  ( join `  K )
cdlemesner.a  |-  A  =  ( Atoms `  K )
cdlemesner.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemesner  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  =/=  R )

Proof of Theorem cdlemesner
StepHypRef Expression
1 nbrne2 4015 . . 3  |-  ( ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  R  =/=  S )
213ad2ant3 983 . 2  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  =/=  S )
32necomd 2504 1  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  =/=  R )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   lecple 13178   joincjn 14041   Atomscatm 28703   HLchlt 28790   LHypclh 29423
This theorem is referenced by:  cdlemeda  29737
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-rab 2527  df-v 2765  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-br 3998
  Copyright terms: Public domain W3C validator