Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf Unicode version

Theorem cdlemf 31374
Description: Lemma F in [Crawley] p. 116. If u is an atom under w, there exists a translation whose trace is u. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf.l  |-  .<_  =  ( le `  K )
cdlemf.a  |-  A  =  ( Atoms `  K )
cdlemf.h  |-  H  =  ( LHyp `  K
)
cdlemf.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemf.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemf  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. f  e.  T  ( R `  f )  =  U )
Distinct variable groups:    A, f    f, H    f, K    .<_ , f    T, f    U, f    f, W
Allowed substitution hint:    R( f)

Proof of Theorem cdlemf
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemf.l . . 3  |-  .<_  =  ( le `  K )
2 eqid 2296 . . 3  |-  ( join `  K )  =  (
join `  K )
3 cdlemf.a . . 3  |-  A  =  ( Atoms `  K )
4 cdlemf.h . . 3  |-  H  =  ( LHyp `  K
)
5 eqid 2296 . . 3  |-  ( meet `  K )  =  (
meet `  K )
61, 2, 3, 4, 5cdlemf2 31373 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) ) )
7 simp1l 979 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simp2l 981 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  p  e.  A
)
9 simp3ll 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  -.  p  .<_  W )
10 simp2r 982 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  q  e.  A
)
11 simp3lr 1027 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  -.  q  .<_  W )
12 cdlemf.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
131, 3, 4, 12cdleme50ex 31370 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p  .<_  W )  /\  (
q  e.  A  /\  -.  q  .<_  W ) )  ->  E. f  e.  T  ( f `  p )  =  q )
147, 8, 9, 10, 11, 13syl122anc 1191 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  E. f  e.  T  ( f `  p
)  =  q )
15 simp3r 984 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( f `  p )  =  q )
1615oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( p
( join `  K )
( f `  p
) )  =  ( p ( join `  K
) q ) )
1716oveq1d 5889 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( (
p ( join `  K
) ( f `  p ) ) (
meet `  K ) W )  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) )
18 simp11 985 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simp3l 983 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  f  e.  T )
20 simp13l 1070 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  p  e.  A )
21 simp2ll 1022 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  -.  p  .<_  W )
22 cdlemf.r . . . . . . . . . . . . 13  |-  R  =  ( ( trL `  K
) `  W )
231, 2, 5, 3, 4, 12, 22trlval2 30974 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  ( p  e.  A  /\  -.  p  .<_  W ) )  ->  ( R `  f )  =  ( ( p ( join `  K ) ( f `
 p ) ) ( meet `  K
) W ) )
2418, 19, 20, 21, 23syl112anc 1186 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( R `  f )  =  ( ( p ( join `  K ) ( f `
 p ) ) ( meet `  K
) W ) )
25 simp2r 982 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  U  =  ( ( p (
join `  K )
q ) ( meet `  K ) W ) )
2617, 24, 253eqtr4d 2338 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A
) )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  /\  ( f  e.  T  /\  ( f `  p
)  =  q ) )  ->  ( R `  f )  =  U )
27263exp 1150 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K ) q ) ( meet `  K
) W ) )  ->  ( ( f  e.  T  /\  (
f `  p )  =  q )  -> 
( R `  f
)  =  U ) ) )
28273expia 1153 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  q  e.  A
)  ->  ( (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  -> 
( ( f  e.  T  /\  ( f `
 p )  =  q )  ->  ( R `  f )  =  U ) ) ) )
29283imp 1145 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( ( f  e.  T  /\  (
f `  p )  =  q )  -> 
( R `  f
)  =  U ) )
3029exp3a 425 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( f  e.  T  ->  ( (
f `  p )  =  q  ->  ( R `
 f )  =  U ) ) )
3130reximdvai 2666 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  ( E. f  e.  T  ( f `  p )  =  q  ->  E. f  e.  T  ( R `  f )  =  U ) )
3214, 31mpd 14 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  /\  ( p  e.  A  /\  q  e.  A )  /\  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) ) )  ->  E. f  e.  T  ( R `  f )  =  U )
33323exp 1150 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  (
( p  e.  A  /\  q  e.  A
)  ->  ( (
( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  ->  E. f  e.  T  ( R `  f )  =  U ) ) )
3433rexlimdvv 2686 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  ( E. p  e.  A  E. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  U  =  ( ( p ( join `  K
) q ) (
meet `  K ) W ) )  ->  E. f  e.  T  ( R `  f )  =  U ) )
356, 34mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W ) )  ->  E. f  e.  T  ( R `  f )  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   lecple 13231   joincjn 14094   meetcmee 14095   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem is referenced by:  cdlemfnid  31375  trlord  31380  dih1dimb2  32053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator