Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemf1 Unicode version

Theorem cdlemf1 30017
Description: Part of Lemma F in [Crawley] p. 116. TODO: should this or part of it become a stand-alone theorem? (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
cdlemf1.l  |-  .<_  =  ( le `  K )
cdlemf1.j  |-  .\/  =  ( join `  K )
cdlemf1.a  |-  A  =  ( Atoms `  K )
cdlemf1.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemf1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. q  e.  A  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q ) ) )
Distinct variable groups:    A, q    H, q    K, q    .<_ , q    P, q    U, q    W, q
Allowed substitution hint:    .\/ ( q)

Proof of Theorem cdlemf1
StepHypRef Expression
1 simp1l 981 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 simp3l 985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A
)
3 simp2l 983 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  U  e.  A
)
4 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  U  .<_  W )
5 simp3r 986 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
6 nbrne2 4042 . . . . 5  |-  ( ( U  .<_  W  /\  -.  P  .<_  W )  ->  U  =/=  P
)
76necomd 2530 . . . 4  |-  ( ( U  .<_  W  /\  -.  P  .<_  W )  ->  P  =/=  U
)
84, 5, 7syl2anc 644 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  U
)
9 cdlemf1.l . . . 4  |-  .<_  =  ( le `  K )
10 cdlemf1.j . . . 4  |-  .\/  =  ( join `  K )
11 cdlemf1.a . . . 4  |-  A  =  ( Atoms `  K )
129, 10, 11hlsupr 28842 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  U  e.  A )  /\  P  =/=  U
)  ->  E. q  e.  A  ( q  =/=  P  /\  q  =/= 
U  /\  q  .<_  ( P  .\/  U ) ) )
131, 2, 3, 8, 12syl31anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. q  e.  A  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P 
.\/  U ) ) )
14 simp31 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  =/=  P )
1514necomd 2530 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  =/=  q )
16 simp13r 1073 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  -.  P  .<_  W )
17 simp12r 1071 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  .<_  W )
18 simp11l 1068 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  K  e.  HL )
19 hllat 28820 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
2018, 19syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  K  e.  Lat )
21 eqid 2284 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
2221, 11atbase 28746 . . . . . . . . . . 11  |-  ( q  e.  A  ->  q  e.  ( Base `  K
) )
23223ad2ant2 979 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  e.  ( Base `  K
) )
24 simp12l 1070 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  e.  A )
2521, 11atbase 28746 . . . . . . . . . . 11  |-  ( U  e.  A  ->  U  e.  ( Base `  K
) )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  e.  ( Base `  K
) )
27 simp11r 1069 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  W  e.  H )
28 cdlemf1.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
2921, 28lhpbase 29454 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3027, 29syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  W  e.  ( Base `  K
) )
3121, 9, 10latjle12 14162 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( q  e.  (
Base `  K )  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) ) )  ->  ( ( q 
.<_  W  /\  U  .<_  W )  <->  ( q  .\/  U )  .<_  W )
)
3220, 23, 26, 30, 31syl13anc 1186 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( q  .<_  W  /\  U  .<_  W )  <->  ( q  .\/  U )  .<_  W ) )
3332biimpd 200 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( q  .<_  W  /\  U  .<_  W )  -> 
( q  .\/  U
)  .<_  W ) )
3417, 33mpan2d 657 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  W  ->  (
q  .\/  U )  .<_  W ) )
35 simp33 995 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  .<_  ( P  .\/  U
) )
36 hlcvl 28816 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  CvLat )
3718, 36syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  K  e.  CvLat )
38 simp2 958 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  e.  A )
39 simp13l 1072 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  e.  A )
40 simp32 994 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  q  =/=  U )
419, 10, 11cvlatexch2 28794 . . . . . . . . . 10  |-  ( ( K  e.  CvLat  /\  (
q  e.  A  /\  P  e.  A  /\  U  e.  A )  /\  q  =/=  U
)  ->  ( q  .<_  ( P  .\/  U
)  ->  P  .<_  ( q  .\/  U ) ) )
4237, 38, 39, 24, 40, 41syl131anc 1197 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  ( P  .\/  U )  ->  P  .<_  ( q  .\/  U ) ) )
4335, 42mpd 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  .<_  ( q  .\/  U
) )
4421, 11atbase 28746 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
4539, 44syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  P  e.  ( Base `  K
) )
4621, 10, 11hlatjcl 28823 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  q  e.  A  /\  U  e.  A )  ->  ( q  .\/  U
)  e.  ( Base `  K ) )
4718, 38, 24, 46syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .\/  U )  e.  ( Base `  K
) )
4821, 9lattr 14156 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( q  .\/  U
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( q  .\/  U )  /\  ( q  .\/  U )  .<_  W )  ->  P  .<_  W )
)
4920, 45, 47, 30, 48syl13anc 1186 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( P  .<_  ( q 
.\/  U )  /\  ( q  .\/  U
)  .<_  W )  ->  P  .<_  W ) )
5043, 49mpand 658 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
( q  .\/  U
)  .<_  W  ->  P  .<_  W ) )
5134, 50syld 42 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  W  ->  P  .<_  W ) )
5216, 51mtod 170 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  -.  q  .<_  W )
539, 10, 11cvlatexch1 28793 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  (
q  e.  A  /\  U  e.  A  /\  P  e.  A )  /\  q  =/=  P
)  ->  ( q  .<_  ( P  .\/  U
)  ->  U  .<_  ( P  .\/  q ) ) )
5437, 38, 24, 39, 14, 53syl131anc 1197 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  (
q  .<_  ( P  .\/  U )  ->  U  .<_  ( P  .\/  q ) ) )
5535, 54mpd 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  U  .<_  ( P  .\/  q
) )
5615, 52, 553jca 1134 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  q  e.  A  /\  ( q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U ) ) )  ->  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q
) ) )
57563exp 1152 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( q  e.  A  ->  ( (
q  =/=  P  /\  q  =/=  U  /\  q  .<_  ( P  .\/  U
) )  ->  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q
) ) ) ) )
5857reximdvai 2654 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( E. q  e.  A  ( q  =/=  P  /\  q  =/= 
U  /\  q  .<_  ( P  .\/  U ) )  ->  E. q  e.  A  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q ) ) ) )
5913, 58mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  A  /\  U  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. q  e.  A  ( P  =/=  q  /\  -.  q  .<_  W  /\  U  .<_  ( P  .\/  q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   Basecbs 13142   lecple 13209   joincjn 14072   Latclat 14145   Atomscatm 28720   CvLatclc 28722   HLchlt 28807   LHypclh 29440
This theorem is referenced by:  cdlemf2  30018  cdlemg5  30061
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-join 14104  df-lat 14146  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-lhyp 29444
  Copyright terms: Public domain W3C validator