Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg16 Unicode version

Theorem cdlemg16 31139
Description: Part of proof of Lemma G of [Crawley] p. 116; 2nd line p. 117, which says that (our) cdlemg10 31123 "implies (2)" (of p. 116). No details are provided by the authors, so there may be a shorter proof; but ours requires the 14 lemmas, one using Desargues' law dalaw 30368, in order to make this inference. This final step eliminates the  ( R `  F )  =/=  ( R `  G ) condition from cdlemg12 31132. TODO: FIX COMMENT TODO: should we also eliminate  P  =/=  Q here (or earlier)? Do it if we don't need to add it in for something else later. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg16  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )

Proof of Theorem cdlemg16
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =  ( R `  G
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simpl21 1035 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =  ( R `  G
) )  ->  F  e.  T )
3 simpl22 1036 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =  ( R `  G
) )  ->  G  e.  T )
4 simpr 448 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =  ( R `  G
) )  ->  ( R `  F )  =  ( R `  G ) )
5 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
125, 6, 7, 8, 9, 10, 11cdlemg15 31138 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( R `  F )  =  ( R `  G ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
131, 2, 3, 4, 12syl121anc 1189 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =  ( R `  G
) )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  W )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )
)
14 simpl1 960 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
15 simpl2 961 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q ) )
16 simpl31 1038 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  -.  ( R `  F ) 
.<_  ( P  .\/  Q
) )
17 simpl32 1039 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  -.  ( R `  G ) 
.<_  ( P  .\/  Q
) )
1816, 17jca 519 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  ( -.  ( R `  F
)  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )
19 simpr 448 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  ( R `  F )  =/=  ( R `  G
) )
20 simpl33 1040 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =/=  ( P  .\/  Q
) )
215, 6, 7, 8, 9, 10, 11cdlemg12 31132 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( -.  ( R `  F
)  .<_  ( P  .\/  Q )  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) )  /\  ( R `  F )  =/=  ( R `  G
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
2214, 15, 18, 19, 20, 21syl113anc 1196 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  W )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )
)
2313, 22pm2.61dane 2645 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( ( F `  ( G `  P ) )  .\/  ( F `  ( G `
 Q ) ) )  =/=  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   meetcmee 14357   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   trLctrl 30640
This theorem is referenced by:  cdlemg16z  31141
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641
  Copyright terms: Public domain W3C validator