Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17 Unicode version

Theorem cdlemg17 31313
Description: Part of Lemma G of [Crawley] p. 117, lines 7 and 8. We show an argument whose value at  G equals itself. TODO: fix comment. (Contributed by NM, 12-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg17  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) ) )  =  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r
Allowed substitution hints:    R( r)    T( r)    H( r)    K( r)    ./\ ( r)

Proof of Theorem cdlemg17
StepHypRef Expression
1 simp11 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp22 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  G  e.  T
)
3 simp12l 1070 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
4 eqid 2435 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
5 cdlemg12.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 29926 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
73, 6syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  (
Base `  K )
)
8 simp21 990 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
9 cdlemg12.l . . . . . . . 8  |-  .<_  =  ( le `  K )
10 cdlemg12.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
11 cdlemg12.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
129, 5, 10, 11ltrncoat 30780 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  ( F `  ( G `  P ) )  e.  A )
131, 8, 2, 3, 12syl121anc 1189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( G `  P ) )  e.  A )
144, 5atbase 29926 . . . . . 6  |-  ( ( F `  ( G `
 P ) )  e.  A  ->  ( F `  ( G `  P ) )  e.  ( Base `  K
) )
1513, 14syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( G `  P ) )  e.  ( Base `  K ) )
16 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
174, 16, 10, 11ltrnj 30768 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  (
Base `  K )  /\  ( F `  ( G `  P )
)  e.  ( Base `  K ) ) )  ->  ( G `  ( P  .\/  ( F `
 ( G `  P ) ) ) )  =  ( ( G `  P ) 
.\/  ( G `  ( F `  ( G `
 P ) ) ) ) )
181, 2, 7, 15, 17syl112anc 1188 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( P  .\/  ( F `
 ( G `  P ) ) ) )  =  ( ( G `  P ) 
.\/  ( G `  ( F `  ( G `
 P ) ) ) ) )
19 simp1 957 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
20 simp23 992 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
21 simp3 959 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( G `
 P )  =/= 
P  /\  ( R `  G )  .<_  ( P 
.\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )
22 cdlemg12.m . . . . . . 7  |-  ./\  =  ( meet `  K )
23 cdlemg12b.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
249, 16, 22, 5, 10, 11, 23cdlemg17b 31298 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  P )  =  Q )
2519, 2, 20, 21, 24syl121anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  P )  =  Q )
2625fveq2d 5723 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( G `  P ) )  =  ( F `
 Q ) )
2726fveq2d 5723 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  ( G `
 P ) ) )  =  ( G `
 ( F `  Q ) ) )
289, 16, 22, 5, 10, 11, 23cdlemg17jq 31312 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  Q ) )  =  ( F `
 ( G `  Q ) ) )
2927, 28eqtrd 2467 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  ( G `
 P ) ) )  =  ( F `
 ( G `  Q ) ) )
3025, 29oveq12d 6090 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( G `
 P )  .\/  ( G `  ( F `
 ( G `  P ) ) ) )  =  ( Q 
.\/  ( F `  ( G `  Q ) ) ) )
3118, 30eqtrd 2467 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( P  .\/  ( F `
 ( G `  P ) ) ) )  =  ( Q 
.\/  ( F `  ( G `  Q ) ) ) )
32 simp13l 1072 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
334, 5atbase 29926 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3432, 33syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  (
Base `  K )
)
359, 5, 10, 11ltrncoat 30780 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  Q  e.  A )  ->  ( F `  ( G `  Q ) )  e.  A )
361, 8, 2, 32, 35syl121anc 1189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( G `  Q ) )  e.  A )
374, 5atbase 29926 . . . . . 6  |-  ( ( F `  ( G `
 Q ) )  e.  A  ->  ( F `  ( G `  Q ) )  e.  ( Base `  K
) )
3836, 37syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( G `  Q ) )  e.  ( Base `  K ) )
394, 16, 10, 11ltrnj 30768 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( Q  e.  (
Base `  K )  /\  ( F `  ( G `  Q )
)  e.  ( Base `  K ) ) )  ->  ( G `  ( Q  .\/  ( F `
 ( G `  Q ) ) ) )  =  ( ( G `  Q ) 
.\/  ( G `  ( F `  ( G `
 Q ) ) ) ) )
401, 2, 34, 38, 39syl112anc 1188 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( Q  .\/  ( F `
 ( G `  Q ) ) ) )  =  ( ( G `  Q ) 
.\/  ( G `  ( F `  ( G `
 Q ) ) ) ) )
419, 16, 22, 5, 10, 11, 23cdlemg17bq 31309 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  Q )  =  P )
4241fveq2d 5723 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( G `  Q ) )  =  ( F `
 P ) )
4342fveq2d 5723 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  ( G `
 Q ) ) )  =  ( G `
 ( F `  P ) ) )
449, 16, 22, 5, 10, 11, 23cdlemg17j 31307 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  P ) )  =  ( F `
 ( G `  P ) ) )
4543, 44eqtrd 2467 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( F `  ( G `
 Q ) ) )  =  ( F `
 ( G `  P ) ) )
4641, 45oveq12d 6090 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( G `
 Q )  .\/  ( G `  ( F `
 ( G `  Q ) ) ) )  =  ( P 
.\/  ( F `  ( G `  P ) ) ) )
4740, 46eqtrd 2467 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( Q  .\/  ( F `
 ( G `  Q ) ) ) )  =  ( P 
.\/  ( F `  ( G `  P ) ) ) )
4831, 47oveq12d 6090 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( G `
 ( P  .\/  ( F `  ( G `
 P ) ) ) )  ./\  ( G `  ( Q  .\/  ( F `  ( G `  Q )
) ) ) )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  ( P  .\/  ( F `  ( G `  P ) ) ) ) )
49 simp11l 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
504, 16, 5hlatjcl 30003 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  ( G `
 P ) )  e.  A )  -> 
( P  .\/  ( F `  ( G `  P ) ) )  e.  ( Base `  K
) )
5149, 3, 13, 50syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  .\/  ( F `  ( G `
 P ) ) )  e.  ( Base `  K ) )
524, 16, 5hlatjcl 30003 . . . 4  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( F `  ( G `
 Q ) )  e.  A )  -> 
( Q  .\/  ( F `  ( G `  Q ) ) )  e.  ( Base `  K
) )
5349, 32, 36, 52syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( Q  .\/  ( F `  ( G `
 Q ) ) )  e.  ( Base `  K ) )
544, 22, 10, 11ltrnm 30767 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( ( P  .\/  ( F `  ( G `
 P ) ) )  e.  ( Base `  K )  /\  ( Q  .\/  ( F `  ( G `  Q ) ) )  e.  (
Base `  K )
) )  ->  ( G `  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )  =  ( ( G `
 ( P  .\/  ( F `  ( G `
 P ) ) ) )  ./\  ( G `  ( Q  .\/  ( F `  ( G `  Q )
) ) ) ) )
551, 2, 51, 53, 54syl112anc 1188 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) ) )  =  ( ( G `
 ( P  .\/  ( F `  ( G `
 P ) ) ) )  ./\  ( G `  ( Q  .\/  ( F `  ( G `  Q )
) ) ) ) )
56 hllat 30000 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
5749, 56syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  Lat )
584, 22latmcom 14492 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 ( G `  P ) ) )  e.  ( Base `  K
)  /\  ( Q  .\/  ( F `  ( G `  Q )
) )  e.  (
Base `  K )
)  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  ( P  .\/  ( F `  ( G `  P )
) ) ) )
5957, 51, 53, 58syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  ( P  .\/  ( F `  ( G `  P )
) ) ) )
6048, 55, 593eqtr4d 2477 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( ( G `  P )  =/=  P  /\  ( R `
 G )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G `  ( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q )
) ) ) )  =  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  ( Q  .\/  ( F `  ( G `  Q ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   Basecbs 13457   lecple 13524   joincjn 14389   meetcmee 14390   Latclat 14462   Atomscatm 29900   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   trLctrl 30794
This theorem is referenced by:  cdlemg18  31318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-map 7011  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795
  Copyright terms: Public domain W3C validator