Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg28 Unicode version

Theorem cdlemg28 30023
Description: Part of proof of Lemma G of [Crawley] p. 116. Chain the equalities of line 14 on p. 117. TODO: rearrange hypotheses in the order of cdlemg29 30024 (and maybe leading up to this too)? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg28  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Distinct variable groups:    z, A    z, F    z, H    z,  .\/    z, K    z,  .<_    z, N    z, P    z, Q    z, R    z, T    z, W    z, v    z, G   
z, O
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v)    T( v)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)   
.<_ ( v)    ./\ ( z, v)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg28
StepHypRef Expression
1 simp11 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp21 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
4 simp22 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( z  e.  A  /\  -.  z  .<_  W ) )
5 simp23l 1081 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  F  e.  T
)
6 simp23r 1082 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  G  e.  T
)
7 simp32 997 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) )
8 simp313 1109 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  z  .<_  ( P 
.\/  v ) )
9 simp33 998 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) )
10 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
11 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
12 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
13 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
14 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
15 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
16 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
1710, 11, 12, 13, 14, 15, 16cdlemg28a 30012 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 17syl333anc 1219 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( z  .\/  ( F `
 ( G `  z ) ) ) 
./\  W ) )
19 cdlemg31.n . . 3  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
20 cdlemg33.o . . 3  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
2110, 11, 12, 13, 14, 15, 16, 19, 20cdlemg28b 30022 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
)  =  ( ( z  .\/  ( F `
 ( G `  z ) ) ) 
./\  W ) )
2218, 21eqtr4d 2291 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   lecple 13142   joincjn 14005   meetcmee 14006   Atomscatm 28583   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477
This theorem is referenced by:  cdlemg29  30024
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478
  Copyright terms: Public domain W3C validator