Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2cex Structured version   Unicode version

Theorem cdlemg2cex 31388
Description: Any translation is one of our  F s. TODO: fix comment, move to its own block maybe? Would this help for cdlemf 31360? (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2.b  |-  B  =  ( Base `  K
)
cdlemg2.l  |-  .<_  =  ( le `  K )
cdlemg2.j  |-  .\/  =  ( join `  K )
cdlemg2.m  |-  ./\  =  ( meet `  K )
cdlemg2.a  |-  A  =  ( Atoms `  K )
cdlemg2.h  |-  H  =  ( LHyp `  K
)
cdlemg2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg2ex.u  |-  U  =  ( ( p  .\/  q )  ./\  W
)
cdlemg2ex.d  |-  D  =  ( ( t  .\/  U )  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )
cdlemg2ex.e  |-  E  =  ( ( p  .\/  q )  ./\  ( D  .\/  ( ( s 
.\/  t )  ./\  W ) ) )
cdlemg2ex.g  |-  G  =  ( x  e.  B  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdlemg2cex  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  <->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  G )
) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    q, p, A    F, p, q    H, p, q    K, p, q    .<_ , p, q    T, p, q    W, p, q, s, t, x, y, z
Allowed substitution hints:    B( q, p)    D( t, q, p)    T( x, y, z, t, s)    U( q, p)    E( t,
s, q, p)    F( x, y, z, t, s)    G( x, y, z, t, s, q, p)    .\/ ( q, p)   
./\ ( q, p)

Proof of Theorem cdlemg2cex
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cdlemg2.l . . 3  |-  .<_  =  ( le `  K )
2 cdlemg2.a . . 3  |-  A  =  ( Atoms `  K )
3 cdlemg2.h . . 3  |-  H  =  ( LHyp `  K
)
4 cdlemg2.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
51, 2, 3, 4cdlemg1cex 31385 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  <->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T ( f `
 p )  =  q ) ) ) )
6 simplll 735 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  K  e.  HL )
7 simpllr 736 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  W  e.  H
)
8 simplrl 737 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  p  e.  A
)
9 simprl 733 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  -.  p  .<_  W )
10 simplrr 738 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  q  e.  A
)
11 simprr 734 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  -.  q  .<_  W )
12 cdlemg2.b . . . . . . . 8  |-  B  =  ( Base `  K
)
13 cdlemg2.j . . . . . . . 8  |-  .\/  =  ( join `  K )
14 cdlemg2.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
15 cdlemg2ex.u . . . . . . . 8  |-  U  =  ( ( p  .\/  q )  ./\  W
)
16 cdlemg2ex.d . . . . . . . 8  |-  D  =  ( ( t  .\/  U )  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )
17 cdlemg2ex.e . . . . . . . 8  |-  E  =  ( ( p  .\/  q )  ./\  ( D  .\/  ( ( s 
.\/  t )  ./\  W ) ) )
18 cdlemg2ex.g . . . . . . . 8  |-  G  =  ( x  e.  B  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
19 eqid 2436 . . . . . . . 8  |-  ( iota_ f  e.  T ( f `
 p )  =  q )  =  (
iota_ f  e.  T
( f `  p
)  =  q )
2012, 1, 13, 14, 2, 3, 15, 16, 17, 18, 4, 19cdlemg1b2 31368 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p  .<_  W )  /\  (
q  e.  A  /\  -.  q  .<_  W ) )  ->  ( iota_ f  e.  T ( f `
 p )  =  q )  =  G )
216, 7, 8, 9, 10, 11, 20syl222anc 1200 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  ( iota_ f  e.  T ( f `  p )  =  q )  =  G )
2221eqeq2d 2447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  q  e.  A )
)  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  ( F  =  ( iota_ f  e.  T
( f `  p
)  =  q )  <-> 
F  =  G ) )
2322pm5.32da 623 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  F  =  (
iota_ f  e.  T
( f `  p
)  =  q ) )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  F  =  G ) ) )
24 df-3an 938 . . . 4  |-  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T ( f `
 p )  =  q ) )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  F  =  (
iota_ f  e.  T
( f `  p
)  =  q ) ) )
25 df-3an 938 . . . 4  |-  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  G )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  /\  F  =  G ) )
2623, 24, 253bitr4g 280 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T
( f `  p
)  =  q ) )  <->  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  G ) ) )
27262rexbidva 2746 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  ( iota_ f  e.  T
( f `  p
)  =  q ) )  <->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  G ) ) )
285, 27bitrd 245 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( F  e.  T  <->  E. p  e.  A  E. q  e.  A  ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  F  =  G )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   [_csb 3251   ifcif 3739   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   iota_crio 6542   Basecbs 13469   lecple 13536   joincjn 14401   meetcmee 14402   Atomscatm 30061   HLchlt 30148   LHypclh 30781   LTrncltrn 30898
This theorem is referenced by:  cdlemg2ce  31389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956
  Copyright terms: Public domain W3C validator