Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg3a Unicode version

Theorem cdlemg3a 29690
Description: Part of proof of Lemma G in [Crawley] p. 116, line 19. Show p  \/ q = p  \/ u. TODO: reformat cdleme0cp 29307 to match this, then replace with cdleme0cp 29307. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
cdlemg3.l  |-  .<_  =  ( le `  K )
cdlemg3.j  |-  .\/  =  ( join `  K )
cdlemg3.m  |-  ./\  =  ( meet `  K )
cdlemg3.a  |-  A  =  ( Atoms `  K )
cdlemg3.h  |-  H  =  ( LHyp `  K
)
cdlemg3.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdlemg3a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  ( P  .\/  Q )  =  ( P  .\/  U
) )

Proof of Theorem cdlemg3a
StepHypRef Expression
1 cdlemg3.l . . 3  |-  .<_  =  ( le `  K )
2 cdlemg3.j . . 3  |-  .\/  =  ( join `  K )
3 cdlemg3.m . . 3  |-  ./\  =  ( meet `  K )
4 cdlemg3.a . . 3  |-  A  =  ( Atoms `  K )
5 cdlemg3.h . . 3  |-  H  =  ( LHyp `  K
)
6 cdlemg3.u . . 3  |-  U  =  ( ( P  .\/  Q )  ./\  W )
71, 2, 3, 4, 5, 6cdleme8 29343 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  ( P  .\/  U )  =  ( P  .\/  Q
) )
87eqcomd 2258 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  ( P  .\/  Q )  =  ( P  .\/  U
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28357   HLchlt 28444   LHypclh 29077
This theorem is referenced by:  cdlemg9a  29725  cdlemg9b  29726  cdlemg12b  29737
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-psubsp 28596  df-pmap 28597  df-padd 28889  df-lhyp 29081
  Copyright terms: Public domain W3C validator