Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg42 Unicode version

Theorem cdlemg42 30991
Description: Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg42.l  |-  .<_  =  ( le `  K )
cdlemg42.j  |-  .\/  =  ( join `  K )
cdlemg42.a  |-  A  =  ( Atoms `  K )
cdlemg42.h  |-  H  =  ( LHyp `  K
)
cdlemg42.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg42.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg42  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )

Proof of Theorem cdlemg42
StepHypRef Expression
1 simp33 993 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
2 simpl1l 1006 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  K  e.  HL )
3 simp31l 1078 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  P  e.  A )
43adantr 451 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  e.  A )
5 simp1 955 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp2l 981 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  F  e.  T )
7 cdlemg42.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
8 cdlemg42.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
9 cdlemg42.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
10 cdlemg42.t . . . . . . . . . . . 12  |-  T  =  ( ( LTrn `  K
) `  W )
117, 8, 9, 10ltrnat 30402 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
125, 6, 3, 11syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  P )  e.  A
)
1312adantr 451 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  P )  e.  A )
14 cdlemg42.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
157, 14, 8hlatlej1 29637 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  ->  P  .<_  ( P  .\/  ( F `  P ) ) )
162, 4, 13, 15syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  .<_  ( P  .\/  ( F `  P )
) )
17 simpr 447 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )
18 hllat 29626 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
192, 18syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  K  e.  Lat )
20 eqid 2285 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2120, 8atbase 29552 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
224, 21syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  e.  ( Base `  K
) )
23 simp2r 982 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  G  e.  T )
247, 8, 9, 10ltrnat 30402 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
255, 23, 3, 24syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( G `  P )  e.  A
)
2625adantr 451 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  e.  A )
2720, 8atbase 29552 . . . . . . . . . 10  |-  ( ( G `  P )  e.  A  ->  ( G `  P )  e.  ( Base `  K
) )
2826, 27syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  e.  ( Base `  K
) )
2920, 14, 8hlatjcl 29629 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
302, 4, 13, 29syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
3120, 7, 14latjle12 14170 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( G `  P )  e.  ( Base `  K
)  /\  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
) )  ->  (
( P  .<_  ( P 
.\/  ( F `  P ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  <->  ( P  .\/  ( G `  P
) )  .<_  ( P 
.\/  ( F `  P ) ) ) )
3219, 22, 28, 30, 31syl13anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .<_  ( P 
.\/  ( F `  P ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  <->  ( P  .\/  ( G `  P
) )  .<_  ( P 
.\/  ( F `  P ) ) ) )
3316, 17, 32mpbi2and 887 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( G `  P ) )  .<_  ( P  .\/  ( F `
 P ) ) )
34 simpl32 1037 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  =/=  P )
3534necomd 2531 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  =/=  ( G `  P
) )
367, 14, 8ps-1 29739 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( G `  P
)  e.  A  /\  P  =/=  ( G `  P ) )  /\  ( P  e.  A  /\  ( F `  P
)  e.  A ) )  ->  ( ( P  .\/  ( G `  P ) )  .<_  ( P  .\/  ( F `
 P ) )  <-> 
( P  .\/  ( G `  P )
)  =  ( P 
.\/  ( F `  P ) ) ) )
372, 4, 26, 35, 4, 13, 36syl132anc 1200 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .\/  ( G `  P )
)  .<_  ( P  .\/  ( F `  P ) )  <->  ( P  .\/  ( G `  P ) )  =  ( P 
.\/  ( F `  P ) ) ) )
3833, 37mpbid 201 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( G `  P ) )  =  ( P  .\/  ( F `  P )
) )
3938oveq1d 5875 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .\/  ( G `  P )
) ( meet `  K
) W )  =  ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W ) )
40 simpl1 958 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
41 simpl2r 1009 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  G  e.  T )
42 simpl31 1036 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
43 eqid 2285 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
44 cdlemg42.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
457, 14, 43, 8, 9, 10, 44trlval2 30425 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( G `  P )
) ( meet `  K
) W ) )
4640, 41, 42, 45syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  G )  =  ( ( P 
.\/  ( G `  P ) ) (
meet `  K ) W ) )
47 simpl2l 1008 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  F  e.  T )
487, 14, 43, 8, 9, 10, 44trlval2 30425 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
4940, 47, 42, 48syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  F )  =  ( ( P 
.\/  ( F `  P ) ) (
meet `  K ) W ) )
5039, 46, 493eqtr4rd 2328 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  F )  =  ( R `  G ) )
5150ex 423 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( G `  P )  .<_  ( P  .\/  ( F `  P )
)  ->  ( R `  F )  =  ( R `  G ) ) )
5251necon3ad 2484 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( R `  F )  =/=  ( R `  G
)  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) ) )
531, 52mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   Latclat 14153   Atomscatm 29526   HLchlt 29613   LHypclh 30246   LTrncltrn 30363   trLctrl 30420
This theorem is referenced by:  cdlemg43  30992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-map 6776  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-p0 14147  df-lat 14154  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-lhyp 30250  df-laut 30251  df-ldil 30366  df-ltrn 30367  df-trl 30421
  Copyright terms: Public domain W3C validator