Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg42 Unicode version

Theorem cdlemg42 30048
Description: Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg42.l  |-  .<_  =  ( le `  K )
cdlemg42.j  |-  .\/  =  ( join `  K )
cdlemg42.a  |-  A  =  ( Atoms `  K )
cdlemg42.h  |-  H  =  ( LHyp `  K
)
cdlemg42.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg42.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg42  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )

Proof of Theorem cdlemg42
StepHypRef Expression
1 simp33 998 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
2 simpl1l 1011 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  K  e.  HL )
3 simp31l 1083 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  P  e.  A )
43adantr 453 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  e.  A )
5 simp1 960 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp2l 986 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  F  e.  T )
7 cdlemg42.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
8 cdlemg42.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
9 cdlemg42.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
10 cdlemg42.t . . . . . . . . . . . 12  |-  T  =  ( ( LTrn `  K
) `  W )
117, 8, 9, 10ltrnat 29459 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
125, 6, 3, 11syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  P )  e.  A
)
1312adantr 453 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  P )  e.  A )
14 cdlemg42.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
157, 14, 8hlatlej1 28694 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  ->  P  .<_  ( P  .\/  ( F `  P ) ) )
162, 4, 13, 15syl3anc 1187 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  .<_  ( P  .\/  ( F `  P )
) )
17 simpr 449 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )
18 hllat 28683 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
192, 18syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  K  e.  Lat )
20 eqid 2256 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2120, 8atbase 28609 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
224, 21syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  e.  ( Base `  K
) )
23 simp2r 987 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  G  e.  T )
247, 8, 9, 10ltrnat 29459 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
255, 23, 3, 24syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( G `  P )  e.  A
)
2625adantr 453 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  e.  A )
2720, 8atbase 28609 . . . . . . . . . 10  |-  ( ( G `  P )  e.  A  ->  ( G `  P )  e.  ( Base `  K
) )
2826, 27syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  e.  ( Base `  K
) )
2920, 14, 8hlatjcl 28686 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
302, 4, 13, 29syl3anc 1187 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
3120, 7, 14latjle12 14095 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( G `  P )  e.  ( Base `  K
)  /\  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
) )  ->  (
( P  .<_  ( P 
.\/  ( F `  P ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  <->  ( P  .\/  ( G `  P
) )  .<_  ( P 
.\/  ( F `  P ) ) ) )
3219, 22, 28, 30, 31syl13anc 1189 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .<_  ( P 
.\/  ( F `  P ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  <->  ( P  .\/  ( G `  P
) )  .<_  ( P 
.\/  ( F `  P ) ) ) )
3316, 17, 32mpbi2and 892 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( G `  P ) )  .<_  ( P  .\/  ( F `
 P ) ) )
34 simpl32 1042 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  =/=  P )
3534necomd 2502 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  =/=  ( G `  P
) )
367, 14, 8ps-1 28796 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( G `  P
)  e.  A  /\  P  =/=  ( G `  P ) )  /\  ( P  e.  A  /\  ( F `  P
)  e.  A ) )  ->  ( ( P  .\/  ( G `  P ) )  .<_  ( P  .\/  ( F `
 P ) )  <-> 
( P  .\/  ( G `  P )
)  =  ( P 
.\/  ( F `  P ) ) ) )
372, 4, 26, 35, 4, 13, 36syl132anc 1205 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .\/  ( G `  P )
)  .<_  ( P  .\/  ( F `  P ) )  <->  ( P  .\/  ( G `  P ) )  =  ( P 
.\/  ( F `  P ) ) ) )
3833, 37mpbid 203 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( G `  P ) )  =  ( P  .\/  ( F `  P )
) )
3938oveq1d 5772 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .\/  ( G `  P )
) ( meet `  K
) W )  =  ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W ) )
40 simpl1 963 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
41 simpl2r 1014 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  G  e.  T )
42 simpl31 1041 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
43 eqid 2256 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
44 cdlemg42.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
457, 14, 43, 8, 9, 10, 44trlval2 29482 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( G `  P )
) ( meet `  K
) W ) )
4640, 41, 42, 45syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  G )  =  ( ( P 
.\/  ( G `  P ) ) (
meet `  K ) W ) )
47 simpl2l 1013 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  F  e.  T )
487, 14, 43, 8, 9, 10, 44trlval2 29482 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
4940, 47, 42, 48syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  F )  =  ( ( P 
.\/  ( F `  P ) ) (
meet `  K ) W ) )
5039, 46, 493eqtr4rd 2299 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  F )  =  ( R `  G ) )
5150ex 425 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( G `  P )  .<_  ( P  .\/  ( F `  P )
)  ->  ( R `  F )  =  ( R `  G ) ) )
5251necon3ad 2455 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( R `  F )  =/=  ( R `  G
)  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) ) )
531, 52mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   Latclat 14078   Atomscatm 28583   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477
This theorem is referenced by:  cdlemg43  30049
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-p0 14072  df-lat 14079  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478
  Copyright terms: Public domain W3C validator