Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44 Structured version   Unicode version

Theorem cdlemg44 31467
Description: Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h  |-  H  =  ( LHyp `  K
)
cdlemg44.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg44.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg44  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )

Proof of Theorem cdlemg44
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2435 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 cdlemg44.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 30740 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K )  -.  p ( le `  K ) W )
543ad2ant1 978 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W )
6 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12l 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  F  e.  T
)
8 simp12r 1071 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  G  e.  T
)
9 cdlemg44.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
103, 9ltrnco 31453 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
116, 7, 8, 10syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  o.  G )  e.  T
)
123, 9ltrnco 31453 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  F  e.  T
)  ->  ( G  o.  F )  e.  T
)
136, 8, 7, 12syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( G  o.  F )  e.  T
)
14 3simpc 956 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )
15 simp13 989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( R `  F )  =/=  ( R `  G )
)
16 cdlemg44.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
173, 9, 16, 1, 2cdlemg44b 31466 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( p  e.  ( Atoms `  K
)  /\  -.  p
( le `  K
) W ) )  /\  ( R `  F )  =/=  ( R `  G )
)  ->  ( F `  ( G `  p
) )  =  ( G `  ( F `
 p ) ) )
186, 7, 8, 14, 15, 17syl131anc 1197 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F `  ( G `  p ) )  =  ( G `
 ( F `  p ) ) )
19 simp12 988 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  e.  T  /\  G  e.  T ) )
20 simp2 958 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  p  e.  (
Atoms `  K ) )
211, 2, 3, 9ltrncoval 30879 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( F  o.  G ) `  p )  =  ( F `  ( G `
 p ) ) )
226, 19, 20, 21syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( F  o.  G ) `  p )  =  ( F `  ( G `
 p ) ) )
231, 2, 3, 9ltrncoval 30879 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  p  e.  ( Atoms `  K )
)  ->  ( ( G  o.  F ) `  p )  =  ( G `  ( F `
 p ) ) )
246, 8, 7, 20, 23syl121anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( G  o.  F ) `  p )  =  ( G `  ( F `
 p ) ) )
2518, 22, 243eqtr4d 2477 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( ( F  o.  G ) `  p )  =  ( ( G  o.  F
) `  p )
)
261, 2, 3, 9cdlemd 30941 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T  /\  ( G  o.  F )  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W )  /\  ( ( F  o.  G ) `  p )  =  ( ( G  o.  F
) `  p )
)  ->  ( F  o.  G )  =  ( G  o.  F ) )
276, 11, 13, 14, 25, 26syl311anc 1198 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F
)  =/=  ( R `
 G ) )  /\  p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W )  ->  ( F  o.  G )  =  ( G  o.  F ) )
2827rexlimdv3a 2824 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W  -> 
( F  o.  G
)  =  ( G  o.  F ) ) )
295, 28mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204    o. ccom 4874   ` cfv 5446   lecple 13528   Atomscatm 29998   HLchlt 30085   LHypclh 30718   LTrncltrn 30835   trLctrl 30892
This theorem is referenced by:  cdlemg47  31470  ltrncom  31472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893
  Copyright terms: Public domain W3C validator