Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg46 Unicode version

Theorem cdlemg46 31371
Description: Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b  |-  B  =  ( Base `  K
)
cdlemg46.h  |-  H  =  ( LHyp `  K
)
cdlemg46.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg46.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg46  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
Distinct variable groups:    h, F    h, H    h, K    R, h    T, h    h, W
Allowed substitution hint:    B( h)

Proof of Theorem cdlemg46
StepHypRef Expression
1 simpl1l 1008 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  K  e.  HL )
2 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2r 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h  e.  T
)
4 simp32 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h  =/=  (  _I  |`  B ) )
5 cdlemg46.b . . . . . 6  |-  B  =  ( Base `  K
)
6 eqid 2435 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
7 cdlemg46.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemg46.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemg46.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
105, 6, 7, 8, 9trlnidat 30809 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( R `  h )  e.  (
Atoms `  K ) )
112, 3, 4, 10syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  h )  e.  (
Atoms `  K ) )
1211adantr 452 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  e.  (
Atoms `  K ) )
13 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F  e.  T
)
14 simp31 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F  =/=  (  _I  |`  B ) )
155, 6, 7, 8, 9trlnidat 30809 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
162, 13, 14, 15syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
1716adantr 452 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F )  e.  (
Atoms `  K ) )
18 simpl33 1040 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  =/=  ( R `  F )
)
19 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  ( h  o.  F
) )  e.  (
Atoms `  K ) )
207, 8ltrnco 31355 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  F  e.  T
)  ->  ( h  o.  F )  e.  T
)
212, 3, 13, 20syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  F )  e.  T
)
227, 8ltrncnv 30782 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
232, 13, 22syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  `' F  e.  T )
24 eqid 2435 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
25 eqid 2435 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
2624, 25, 7, 8, 9trlco 31363 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  o.  F )  e.  T  /\  `' F  e.  T
)  ->  ( R `  ( ( h  o.  F )  o.  `' F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 `' F ) ) )
272, 21, 23, 26syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( ( h  o.  F )  o.  `' F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 `' F ) ) )
28 coass 5379 . . . . . . . 8  |-  ( ( h  o.  F )  o.  `' F )  =  ( h  o.  ( F  o.  `' F ) )
295, 7, 8ltrn1o 30760 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
302, 13, 29syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F : B -1-1-onto-> B
)
31 f1ococnv2 5693 . . . . . . . . . . 11  |-  ( F : B -1-1-onto-> B  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
3230, 31syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
3332coeq2d 5026 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  ( F  o.  `' F ) )  =  ( h  o.  (  _I  |`  B ) ) )
345, 7, 8ltrn1o 30760 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T
)  ->  h : B
-1-1-onto-> B )
352, 3, 34syl2anc 643 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h : B -1-1-onto-> B
)
36 f1of 5665 . . . . . . . . . 10  |-  ( h : B -1-1-onto-> B  ->  h : B
--> B )
37 fcoi1 5608 . . . . . . . . . 10  |-  ( h : B --> B  -> 
( h  o.  (  _I  |`  B ) )  =  h )
3835, 36, 373syl 19 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  (  _I  |`  B ) )  =  h )
3933, 38eqtrd 2467 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  ( F  o.  `' F ) )  =  h )
4028, 39syl5eq 2479 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( ( h  o.  F )  o.  `' F )  =  h )
4140fveq2d 5723 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( ( h  o.  F )  o.  `' F ) )  =  ( R `  h
) )
427, 8, 9trlcnv 30801 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
432, 13, 42syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
4443oveq2d 6088 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  `' F ) )  =  ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) ) )
4527, 41, 443brtr3d 4233 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  h ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
4645adantr 452 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
4724, 25, 6hlatlej2 30012 . . . . 5  |-  ( ( K  e.  HL  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
)  /\  ( R `  F )  e.  (
Atoms `  K ) )  ->  ( R `  F ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
481, 19, 17, 47syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
49 hllat 30000 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
501, 49syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  K  e.  Lat )
515, 6atbase 29926 . . . . . 6  |-  ( ( R `  h )  e.  ( Atoms `  K
)  ->  ( R `  h )  e.  B
)
5212, 51syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  e.  B
)
535, 6atbase 29926 . . . . . 6  |-  ( ( R `  F )  e.  ( Atoms `  K
)  ->  ( R `  F )  e.  B
)
5417, 53syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F )  e.  B
)
555, 25, 6hlatjcl 30003 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
)  /\  ( R `  F )  e.  (
Atoms `  K ) )  ->  ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) )  e.  B
)
561, 19, 17, 55syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( ( R `  ( h  o.  F ) ) (
join `  K )
( R `  F
) )  e.  B
)
575, 24, 25latjle12 14479 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( R `  h )  e.  B  /\  ( R `  F
)  e.  B  /\  ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) )  e.  B ) )  ->  ( ( ( R `  h ) ( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) )  /\  ( R `  F )
( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) ) )  <->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) ) )
5850, 52, 54, 56, 57syl13anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( (
( R `  h
) ( le `  K ) ( ( R `  ( h  o.  F ) ) ( join `  K
) ( R `  F ) )  /\  ( R `  F ) ( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) ) )  <->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) ) )
5946, 48, 58mpbi2and 888 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
6024, 25, 62atjlej 30115 . . 3  |-  ( ( K  e.  HL  /\  ( ( R `  h )  e.  (
Atoms `  K )  /\  ( R `  F )  e.  ( Atoms `  K
)  /\  ( R `  h )  =/=  ( R `  F )
)  /\  ( ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )  /\  ( R `  F
)  e.  ( Atoms `  K )  /\  (
( R `  h
) ( join `  K
) ( R `  F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) ) ) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
611, 12, 17, 18, 19, 17, 59, 60syl133anc 1207 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
62 nelne2 2688 . . . 4  |-  ( ( ( R `  F
)  e.  ( Atoms `  K )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  F )  =/=  ( R `  (
h  o.  F ) ) )
6362necomd 2681 . . 3  |-  ( ( ( R `  F
)  e.  ( Atoms `  K )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
6416, 63sylan 458 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
6561, 64pm2.61dan 767 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204    _I cid 4485   `'ccnv 4868    |` cres 4871    o. ccom 4873   -->wf 5441   -1-1-onto->wf1o 5444   ` cfv 5445  (class class class)co 6072   Basecbs 13457   lecple 13524   joincjn 14389   Latclat 14462   Atomscatm 29900   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   trLctrl 30794
This theorem is referenced by:  cdlemg47  31372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-map 7011  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795
  Copyright terms: Public domain W3C validator