Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg46 Unicode version

Theorem cdlemg46 29613
Description: Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b  |-  B  =  ( Base `  K
)
cdlemg46.h  |-  H  =  ( LHyp `  K
)
cdlemg46.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg46.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg46  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
Distinct variable groups:    h, F    h, H    h, K    R, h    T, h    h, W
Allowed substitution hint:    B( h)

Proof of Theorem cdlemg46
StepHypRef Expression
1 simpl1l 1011 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  K  e.  HL )
2 simp1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2r 987 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h  e.  T
)
4 simp32 997 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h  =/=  (  _I  |`  B ) )
5 cdlemg46.b . . . . . 6  |-  B  =  ( Base `  K
)
6 eqid 2253 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
7 cdlemg46.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemg46.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemg46.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
105, 6, 7, 8, 9trlnidat 29051 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( R `  h )  e.  (
Atoms `  K ) )
112, 3, 4, 10syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  h )  e.  (
Atoms `  K ) )
1211adantr 453 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  e.  (
Atoms `  K ) )
13 simp2l 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F  e.  T
)
14 simp31 996 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F  =/=  (  _I  |`  B ) )
155, 6, 7, 8, 9trlnidat 29051 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
162, 13, 14, 15syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
1716adantr 453 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F )  e.  (
Atoms `  K ) )
18 simpl33 1043 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  =/=  ( R `  F )
)
19 simpr 449 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  ( h  o.  F
) )  e.  (
Atoms `  K ) )
207, 8ltrnco 29597 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  F  e.  T
)  ->  ( h  o.  F )  e.  T
)
212, 3, 13, 20syl3anc 1187 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  F )  e.  T
)
227, 8ltrncnv 29024 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
232, 13, 22syl2anc 645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  `' F  e.  T )
24 eqid 2253 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
25 eqid 2253 . . . . . . . 8  |-  ( join `  K )  =  (
join `  K )
2624, 25, 7, 8, 9trlco 29605 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  o.  F )  e.  T  /\  `' F  e.  T
)  ->  ( R `  ( ( h  o.  F )  o.  `' F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 `' F ) ) )
272, 21, 23, 26syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( ( h  o.  F )  o.  `' F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 `' F ) ) )
28 coass 5097 . . . . . . . 8  |-  ( ( h  o.  F )  o.  `' F )  =  ( h  o.  ( F  o.  `' F ) )
295, 7, 8ltrn1o 29002 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
302, 13, 29syl2anc 645 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  F : B -1-1-onto-> B
)
31 f1ococnv2 5357 . . . . . . . . . . 11  |-  ( F : B -1-1-onto-> B  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
3230, 31syl 17 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( F  o.  `' F )  =  (  _I  |`  B )
)
3332coeq2d 4753 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  ( F  o.  `' F ) )  =  ( h  o.  (  _I  |`  B ) ) )
345, 7, 8ltrn1o 29002 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T
)  ->  h : B
-1-1-onto-> B )
352, 3, 34syl2anc 645 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  h : B -1-1-onto-> B
)
36 f1of 5329 . . . . . . . . . 10  |-  ( h : B -1-1-onto-> B  ->  h : B
--> B )
37 fcoi1 5272 . . . . . . . . . 10  |-  ( h : B --> B  -> 
( h  o.  (  _I  |`  B ) )  =  h )
3835, 36, 373syl 20 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  (  _I  |`  B ) )  =  h )
3933, 38eqtrd 2285 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( h  o.  ( F  o.  `' F ) )  =  h )
4028, 39syl5eq 2297 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( ( h  o.  F )  o.  `' F )  =  h )
4140fveq2d 5381 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( ( h  o.  F )  o.  `' F ) )  =  ( R `  h
) )
427, 8, 9trlcnv 29043 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
432, 13, 42syl2anc 645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
4443oveq2d 5726 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  `' F ) )  =  ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) ) )
4527, 41, 443brtr3d 3949 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  h ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
4645adantr 453 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
4724, 25, 6hlatlej2 28254 . . . . 5  |-  ( ( K  e.  HL  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
)  /\  ( R `  F )  e.  (
Atoms `  K ) )  ->  ( R `  F ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
481, 19, 17, 47syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
49 hllat 28242 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
501, 49syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  K  e.  Lat )
515, 6atbase 28168 . . . . . 6  |-  ( ( R `  h )  e.  ( Atoms `  K
)  ->  ( R `  h )  e.  B
)
5212, 51syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  h )  e.  B
)
535, 6atbase 28168 . . . . . 6  |-  ( ( R `  F )  e.  ( Atoms `  K
)  ->  ( R `  F )  e.  B
)
5417, 53syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  F )  e.  B
)
555, 25, 6hlatjcl 28245 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
)  /\  ( R `  F )  e.  (
Atoms `  K ) )  ->  ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) )  e.  B
)
561, 19, 17, 55syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( ( R `  ( h  o.  F ) ) (
join `  K )
( R `  F
) )  e.  B
)
575, 24, 25latjle12 14012 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( R `  h )  e.  B  /\  ( R `  F
)  e.  B  /\  ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) )  e.  B ) )  ->  ( ( ( R `  h ) ( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) )  /\  ( R `  F )
( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) ) )  <->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) ) )
5850, 52, 54, 56, 57syl13anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( (
( R `  h
) ( le `  K ) ( ( R `  ( h  o.  F ) ) ( join `  K
) ( R `  F ) )  /\  ( R `  F ) ( le `  K
) ( ( R `
 ( h  o.  F ) ) (
join `  K )
( R `  F
) ) )  <->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) ) )
5946, 48, 58mpbi2and 892 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( ( R `  h )
( join `  K )
( R `  F
) ) ( le
`  K ) ( ( R `  (
h  o.  F ) ) ( join `  K
) ( R `  F ) ) )
6024, 25, 62atjlej 28357 . . 3  |-  ( ( K  e.  HL  /\  ( ( R `  h )  e.  (
Atoms `  K )  /\  ( R `  F )  e.  ( Atoms `  K
)  /\  ( R `  h )  =/=  ( R `  F )
)  /\  ( ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )  /\  ( R `  F
)  e.  ( Atoms `  K )  /\  (
( R `  h
) ( join `  K
) ( R `  F ) ) ( le `  K ) ( ( R `  ( h  o.  F
) ) ( join `  K ) ( R `
 F ) ) ) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
611, 12, 17, 18, 19, 17, 59, 60syl133anc 1210 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K )
)  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
62 nelne2 2502 . . . 4  |-  ( ( ( R `  F
)  e.  ( Atoms `  K )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  F )  =/=  ( R `  (
h  o.  F ) ) )
6362necomd 2495 . . 3  |-  ( ( ( R `  F
)  e.  ( Atoms `  K )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
6416, 63sylan 459 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  /\  -.  ( R `  ( h  o.  F ) )  e.  ( Atoms `  K
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
6561, 64pm2.61dan 769 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   -->wf 4588   -1-1-onto->wf1o 4591   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   Latclat 13995   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  cdlemg47  29614
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator