Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg47 Unicode version

Theorem cdlemg47 31222
Description: Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b  |-  B  =  ( Base `  K
)
cdlemg46.h  |-  H  =  ( LHyp `  K
)
cdlemg46.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg46.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg47  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
Distinct variable groups:    h, F    h, H    h, K    R, h    T, h    h, W
Allowed substitution hints:    B( h)    G( h)

Proof of Theorem cdlemg47
StepHypRef Expression
1 simp11 987 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 983 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  h  e.  T )
3 simp12 988 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  F  e.  T )
4 cdlemg46.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
5 cdlemg46.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrnco 31205 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  F  e.  T
)  ->  ( h  o.  F )  e.  T
)
71, 2, 3, 6syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
h  o.  F )  e.  T )
8 simp13 989 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  G  e.  T )
9 simp3 959 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )
10 cdlemg46.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
11 cdlemg46.r . . . . . . . . . 10  |-  R  =  ( ( trL `  K
) `  W )
1210, 4, 5, 11cdlemg46 31221 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
131, 3, 2, 9, 12syl121anc 1189 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
14 simp2r 984 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  F )  =  ( R `  G ) )
1513, 14neeqtrd 2593 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  G
) )
164, 5, 11cdlemg44 31219 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( h  o.  F )  e.  T  /\  G  e.  T )  /\  ( R `  ( h  o.  F ) )  =/=  ( R `  G
) )  ->  (
( h  o.  F
)  o.  G )  =  ( G  o.  ( h  o.  F
) ) )
171, 7, 8, 15, 16syl121anc 1189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  F
)  o.  G )  =  ( G  o.  ( h  o.  F
) ) )
18 coass 5351 . . . . . 6  |-  ( ( G  o.  h )  o.  F )  =  ( G  o.  (
h  o.  F ) )
1917, 18syl6eqr 2458 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  F
)  o.  G )  =  ( ( G  o.  h )  o.  F ) )
20 simp33 995 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  h )  =/=  ( R `  F
) )
2120, 14neeqtrd 2593 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  h )  =/=  ( R `  G
) )
224, 5, 11cdlemg44 31219 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  G  e.  T )  /\  ( R `  h )  =/=  ( R `  G
) )  ->  (
h  o.  G )  =  ( G  o.  h ) )
231, 2, 8, 21, 22syl121anc 1189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
h  o.  G )  =  ( G  o.  h ) )
2423coeq1d 4997 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  G
)  o.  F )  =  ( ( G  o.  h )  o.  F ) )
2519, 24eqtr4d 2443 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  F
)  o.  G )  =  ( ( h  o.  G )  o.  F ) )
26 coass 5351 . . . 4  |-  ( ( h  o.  F )  o.  G )  =  ( h  o.  ( F  o.  G )
)
27 coass 5351 . . . 4  |-  ( ( h  o.  G )  o.  F )  =  ( h  o.  ( G  o.  F )
)
2825, 26, 273eqtr3g 2463 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
h  o.  ( F  o.  G ) )  =  ( h  o.  ( G  o.  F
) ) )
2928coeq2d 4998 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( F  o.  G ) ) )  =  ( `' h  o.  ( h  o.  ( G  o.  F ) ) ) )
30 coass 5351 . . . 4  |-  ( ( `' h  o.  h
)  o.  ( F  o.  G ) )  =  ( `' h  o.  ( h  o.  ( F  o.  G )
) )
3110, 4, 5ltrn1o 30610 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T
)  ->  h : B
-1-1-onto-> B )
321, 2, 31syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  h : B -1-1-onto-> B )
33 f1ococnv1 5667 . . . . . 6  |-  ( h : B -1-1-onto-> B  ->  ( `' h  o.  h )  =  (  _I  |`  B ) )
3432, 33syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  h
)  =  (  _I  |`  B ) )
3534coeq1d 4997 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( `' h  o.  h )  o.  ( F  o.  G )
)  =  ( (  _I  |`  B )  o.  ( F  o.  G
) ) )
3630, 35syl5eqr 2454 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( F  o.  G ) ) )  =  ( (  _I  |`  B )  o.  ( F  o.  G
) ) )
374, 5ltrnco 31205 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
381, 3, 8, 37syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G )  e.  T )
3910, 4, 5ltrn1o 30610 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T
)  ->  ( F  o.  G ) : B -1-1-onto-> B
)
401, 38, 39syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G ) : B -1-1-onto-> B )
41 f1of 5637 . . . 4  |-  ( ( F  o.  G ) : B -1-1-onto-> B  ->  ( F  o.  G ) : B --> B )
42 fcoi2 5581 . . . 4  |-  ( ( F  o.  G ) : B --> B  -> 
( (  _I  |`  B )  o.  ( F  o.  G ) )  =  ( F  o.  G
) )
4340, 41, 423syl 19 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
(  _I  |`  B )  o.  ( F  o.  G ) )  =  ( F  o.  G
) )
4436, 43eqtrd 2440 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( F  o.  G ) ) )  =  ( F  o.  G ) )
45 coass 5351 . . . 4  |-  ( ( `' h  o.  h
)  o.  ( G  o.  F ) )  =  ( `' h  o.  ( h  o.  ( G  o.  F )
) )
4634coeq1d 4997 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( `' h  o.  h )  o.  ( G  o.  F )
)  =  ( (  _I  |`  B )  o.  ( G  o.  F
) ) )
4745, 46syl5eqr 2454 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( G  o.  F ) ) )  =  ( (  _I  |`  B )  o.  ( G  o.  F
) ) )
484, 5ltrnco 31205 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  F  e.  T
)  ->  ( G  o.  F )  e.  T
)
491, 8, 3, 48syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( G  o.  F )  e.  T )
5010, 4, 5ltrn1o 30610 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  F )  e.  T
)  ->  ( G  o.  F ) : B -1-1-onto-> B
)
511, 49, 50syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( G  o.  F ) : B -1-1-onto-> B )
52 f1of 5637 . . . 4  |-  ( ( G  o.  F ) : B -1-1-onto-> B  ->  ( G  o.  F ) : B --> B )
53 fcoi2 5581 . . . 4  |-  ( ( G  o.  F ) : B --> B  -> 
( (  _I  |`  B )  o.  ( G  o.  F ) )  =  ( G  o.  F
) )
5451, 52, 533syl 19 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
(  _I  |`  B )  o.  ( G  o.  F ) )  =  ( G  o.  F
) )
5547, 54eqtrd 2440 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( G  o.  F ) ) )  =  ( G  o.  F ) )
5629, 44, 553eqtr3d 2448 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571    _I cid 4457   `'ccnv 4840    |` cres 4843    o. ccom 4845   -->wf 5413   -1-1-onto->wf1o 5416   ` cfv 5417   Basecbs 13428   HLchlt 29837   LHypclh 30470   LTrncltrn 30587   trLctrl 30644
This theorem is referenced by:  cdlemg48  31223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-map 6983  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-lplanes 29985  df-lvols 29986  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474  df-laut 30475  df-ldil 30590  df-ltrn 30591  df-trl 30645
  Copyright terms: Public domain W3C validator