Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh1 Unicode version

Theorem cdlemh1 30134
Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b  |-  B  =  ( Base `  K
)
cdlemh.l  |-  .<_  =  ( le `  K )
cdlemh.j  |-  .\/  =  ( join `  K )
cdlemh.m  |-  ./\  =  ( meet `  K )
cdlemh.a  |-  A  =  ( Atoms `  K )
cdlemh.h  |-  H  =  ( LHyp `  K
)
cdlemh.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemh.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemh.s  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
Assertion
Ref Expression
cdlemh1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )

Proof of Theorem cdlemh1
StepHypRef Expression
1 cdlemh.s . . 3  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
21oveq1i 5767 . 2  |-  ( S 
.\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )
3 simp11l 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  HL )
4 simp11 990 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp13 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  G  e.  T
)
6 simp12 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  F  e.  T
)
7 simp3r 989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
87necomd 2502 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
9 cdlemh.a . . . . . 6  |-  A  =  ( Atoms `  K )
10 cdlemh.h . . . . . 6  |-  H  =  ( LHyp `  K
)
11 cdlemh.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
12 cdlemh.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
139, 10, 11, 12trlcocnvat 30043 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  ( R `  G )  =/=  ( R `  F
) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
144, 5, 6, 8, 13syl121anc 1192 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
15 hllat 28683 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
163, 15syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  Lat )
17 simp2l 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  P  e.  A
)
18 cdlemh.b . . . . . . 7  |-  B  =  ( Base `  K
)
1918, 9atbase 28609 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
2017, 19syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  P  e.  B
)
2118, 10, 11, 12trlcl 29483 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  B
)
224, 5, 21syl2anc 645 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  e.  B
)
23 cdlemh.j . . . . . 6  |-  .\/  =  ( join `  K )
2418, 23latjcl 14083 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( R `  G )  e.  B )  -> 
( P  .\/  ( R `  G )
)  e.  B )
2516, 20, 22, 24syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  .\/  ( R `  G ) )  e.  B )
26 simp2r 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  e.  A
)
2718, 23, 9hlatjcl 28686 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  ( G  o.  `' F ) )  e.  A )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B
)
283, 26, 14, 27syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B
)
29 cdlemh.l . . . . . 6  |-  .<_  =  ( le `  K )
3029, 23, 9hlatlej2 28695 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  ( G  o.  `' F ) )  e.  A )  ->  ( R `  ( G  o.  `' F ) )  .<_  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
313, 26, 14, 30syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  .<_  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
32 cdlemh.m . . . . 5  |-  ./\  =  ( meet `  K )
3318, 29, 23, 32, 9atmod4i1 29185 . . . 4  |-  ( ( K  e.  HL  /\  ( ( R `  ( G  o.  `' F ) )  e.  A  /\  ( P 
.\/  ( R `  G ) )  e.  B  /\  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) )  e.  B )  /\  ( R `  ( G  o.  `' F ) )  .<_  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( ( P  .\/  ( R `  G ) )  .\/  ( R `
 ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
343, 14, 25, 28, 31, 33syl131anc 1200 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( ( P  .\/  ( R `  G ) )  .\/  ( R `
 ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
3510, 11ltrncnv 29465 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
364, 6, 35syl2anc 645 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  `' F  e.  T )
3723, 10, 11, 12trljco2 30060 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( ( R `  G )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( R `  `' F )  .\/  ( R `  ( G  o.  `' F ) ) ) )
384, 5, 36, 37syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( R `
 G )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( R `  `' F )  .\/  ( R `  ( G  o.  `' F ) ) ) )
3910, 11, 12trlcnv 29484 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
404, 6, 39syl2anc 645 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
4140oveq1d 5772 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( R `
 `' F ) 
.\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( R `
 F )  .\/  ( R `  ( G  o.  `' F ) ) ) )
4238, 41eqtrd 2288 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( R `
 G )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( R `  F
)  .\/  ( R `  ( G  o.  `' F ) ) ) )
4342oveq2d 5773 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  .\/  ( ( R `  G )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( P 
.\/  ( ( R `
 F )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
4410, 11ltrnco 30038 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
454, 5, 36, 44syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( G  o.  `' F )  e.  T
)
4618, 10, 11, 12trlcl 29483 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T
)  ->  ( R `  ( G  o.  `' F ) )  e.  B )
474, 45, 46syl2anc 645 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  B )
4818, 23latjass 14128 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( R `  G
)  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B ) )  ->  ( ( P  .\/  ( R `  G ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  G ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
4916, 20, 22, 47, 48syl13anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  G ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  G ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
5018, 10, 11, 12trlcl 29483 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
514, 6, 50syl2anc 645 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  e.  B
)
5218, 23latjass 14128 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( R `  F
)  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B ) )  ->  ( ( P  .\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  F ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
5316, 20, 51, 47, 52syl13anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  F ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
5443, 49, 533eqtr4d 2298 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  G ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( P  .\/  ( R `  F )
)  .\/  ( R `  ( G  o.  `' F ) ) ) )
5554oveq1d 5772 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
56 simp3l 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  .<_  ( P 
.\/  ( R `  F ) ) )
5718, 9atbase 28609 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
5826, 57syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  e.  B
)
5918, 23latjcl 14083 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( R `  F )  e.  B )  -> 
( P  .\/  ( R `  F )
)  e.  B )
6016, 20, 51, 59syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  .\/  ( R `  F ) )  e.  B )
6118, 29, 23latjlej1 14098 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  B  /\  ( P  .\/  ( R `  F )
)  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B ) )  ->  ( Q  .<_  ( P  .\/  ( R `  F )
)  ->  ( Q  .\/  ( R `  ( G  o.  `' F
) ) )  .<_  ( ( P  .\/  ( R `  F ) )  .\/  ( R `
 ( G  o.  `' F ) ) ) ) )
6216, 58, 60, 47, 61syl13anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  .<_  ( P  .\/  ( R `
 F ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  .<_  ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
6356, 62mpd 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  .<_  ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) )
6418, 23latjcl 14083 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( R `
 F ) )  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B )  ->  (
( P  .\/  ( R `  F )
)  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B )
6516, 60, 47, 64syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B
)
6618, 29, 32latleeqm2 14113 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) )  e.  B  /\  (
( P  .\/  ( R `  F )
)  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B )  -> 
( ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  .<_  ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) )  <-> 
( ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
6716, 28, 65, 66syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) 
.<_  ( ( P  .\/  ( R `  F ) )  .\/  ( R `
 ( G  o.  `' F ) ) )  <-> 
( ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
6863, 67mpbid 203 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
6934, 55, 683eqtrd 2292 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
702, 69syl5eq 2300 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   `'ccnv 4625    o. ccom 4630   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   Latclat 14078   Atomscatm 28583   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477
This theorem is referenced by:  cdlemh  30136
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478
  Copyright terms: Public domain W3C validator