Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh1 Unicode version

Theorem cdlemh1 30155
Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b  |-  B  =  ( Base `  K
)
cdlemh.l  |-  .<_  =  ( le `  K )
cdlemh.j  |-  .\/  =  ( join `  K )
cdlemh.m  |-  ./\  =  ( meet `  K )
cdlemh.a  |-  A  =  ( Atoms `  K )
cdlemh.h  |-  H  =  ( LHyp `  K
)
cdlemh.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemh.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemh.s  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
Assertion
Ref Expression
cdlemh1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )

Proof of Theorem cdlemh1
StepHypRef Expression
1 cdlemh.s . . 3  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
21oveq1i 5788 . 2  |-  ( S 
.\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )
3 simp11l 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  HL )
4 simp11 990 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp13 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  G  e.  T
)
6 simp12 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  F  e.  T
)
7 simp3r 989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
87necomd 2502 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
9 cdlemh.a . . . . . 6  |-  A  =  ( Atoms `  K )
10 cdlemh.h . . . . . 6  |-  H  =  ( LHyp `  K
)
11 cdlemh.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
12 cdlemh.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
139, 10, 11, 12trlcocnvat 30064 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  ( R `  G )  =/=  ( R `  F
) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
144, 5, 6, 8, 13syl121anc 1192 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
15 hllat 28704 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
163, 15syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  Lat )
17 simp2l 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  P  e.  A
)
18 cdlemh.b . . . . . . 7  |-  B  =  ( Base `  K
)
1918, 9atbase 28630 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
2017, 19syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  P  e.  B
)
2118, 10, 11, 12trlcl 29504 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  B
)
224, 5, 21syl2anc 645 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  e.  B
)
23 cdlemh.j . . . . . 6  |-  .\/  =  ( join `  K )
2418, 23latjcl 14104 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( R `  G )  e.  B )  -> 
( P  .\/  ( R `  G )
)  e.  B )
2516, 20, 22, 24syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  .\/  ( R `  G ) )  e.  B )
26 simp2r 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  e.  A
)
2718, 23, 9hlatjcl 28707 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  ( G  o.  `' F ) )  e.  A )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B
)
283, 26, 14, 27syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B
)
29 cdlemh.l . . . . . 6  |-  .<_  =  ( le `  K )
3029, 23, 9hlatlej2 28716 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  ( G  o.  `' F ) )  e.  A )  ->  ( R `  ( G  o.  `' F ) )  .<_  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
313, 26, 14, 30syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  .<_  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
32 cdlemh.m . . . . 5  |-  ./\  =  ( meet `  K )
3318, 29, 23, 32, 9atmod4i1 29206 . . . 4  |-  ( ( K  e.  HL  /\  ( ( R `  ( G  o.  `' F ) )  e.  A  /\  ( P 
.\/  ( R `  G ) )  e.  B  /\  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) )  e.  B )  /\  ( R `  ( G  o.  `' F ) )  .<_  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( ( P  .\/  ( R `  G ) )  .\/  ( R `
 ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
343, 14, 25, 28, 31, 33syl131anc 1200 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( ( P  .\/  ( R `  G ) )  .\/  ( R `
 ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
3510, 11ltrncnv 29486 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
364, 6, 35syl2anc 645 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  `' F  e.  T )
3723, 10, 11, 12trljco2 30081 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( ( R `  G )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( R `  `' F )  .\/  ( R `  ( G  o.  `' F ) ) ) )
384, 5, 36, 37syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( R `
 G )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( R `  `' F )  .\/  ( R `  ( G  o.  `' F ) ) ) )
3910, 11, 12trlcnv 29505 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
404, 6, 39syl2anc 645 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
4140oveq1d 5793 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( R `
 `' F ) 
.\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( R `
 F )  .\/  ( R `  ( G  o.  `' F ) ) ) )
4238, 41eqtrd 2288 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( R `
 G )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( R `  F
)  .\/  ( R `  ( G  o.  `' F ) ) ) )
4342oveq2d 5794 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  .\/  ( ( R `  G )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( P 
.\/  ( ( R `
 F )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
4410, 11ltrnco 30059 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
454, 5, 36, 44syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( G  o.  `' F )  e.  T
)
4618, 10, 11, 12trlcl 29504 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T
)  ->  ( R `  ( G  o.  `' F ) )  e.  B )
474, 45, 46syl2anc 645 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  B )
4818, 23latjass 14149 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( R `  G
)  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B ) )  ->  ( ( P  .\/  ( R `  G ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  G ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
4916, 20, 22, 47, 48syl13anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  G ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  G ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
5018, 10, 11, 12trlcl 29504 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
514, 6, 50syl2anc 645 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  e.  B
)
5218, 23latjass 14149 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( R `  F
)  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B ) )  ->  ( ( P  .\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  F ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
5316, 20, 51, 47, 52syl13anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( P  .\/  ( ( R `  F ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
5443, 49, 533eqtr4d 2298 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  G ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( P  .\/  ( R `  F )
)  .\/  ( R `  ( G  o.  `' F ) ) ) )
5554oveq1d 5793 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
56 simp3l 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  .<_  ( P 
.\/  ( R `  F ) ) )
5718, 9atbase 28630 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
5826, 57syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  e.  B
)
5918, 23latjcl 14104 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( R `  F )  e.  B )  -> 
( P  .\/  ( R `  F )
)  e.  B )
6016, 20, 51, 59syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  .\/  ( R `  F ) )  e.  B )
6118, 29, 23latjlej1 14119 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  B  /\  ( P  .\/  ( R `  F )
)  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B ) )  ->  ( Q  .<_  ( P  .\/  ( R `  F )
)  ->  ( Q  .\/  ( R `  ( G  o.  `' F
) ) )  .<_  ( ( P  .\/  ( R `  F ) )  .\/  ( R `
 ( G  o.  `' F ) ) ) ) )
6216, 58, 60, 47, 61syl13anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  .<_  ( P  .\/  ( R `
 F ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  .<_  ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
6356, 62mpd 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  .<_  ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) )
6418, 23latjcl 14104 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( R `
 F ) )  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B )  ->  (
( P  .\/  ( R `  F )
)  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B )
6516, 60, 47, 64syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B
)
6618, 29, 32latleeqm2 14134 . . . . 5  |-  ( ( K  e.  Lat  /\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) )  e.  B  /\  (
( P  .\/  ( R `  F )
)  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B )  -> 
( ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  .<_  ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) )  <-> 
( ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
6716, 28, 65, 66syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) 
.<_  ( ( P  .\/  ( R `  F ) )  .\/  ( R `
 ( G  o.  `' F ) ) )  <-> 
( ( ( P 
.\/  ( R `  F ) )  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )
6863, 67mpbid 203 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 F ) ) 
.\/  ( R `  ( G  o.  `' F ) ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
6934, 55, 683eqtrd 2292 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
702, 69syl5eq 2300 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983   `'ccnv 4646    o. ccom 4651   ` cfv 4659  (class class class)co 5778   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   Latclat 14099   Atomscatm 28604   HLchlt 28691   LHypclh 29324   LTrncltrn 29441   trLctrl 29498
This theorem is referenced by:  cdlemh  30157
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-map 6728  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-llines 28838  df-lplanes 28839  df-lvols 28840  df-lines 28841  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328  df-laut 29329  df-ldil 29444  df-ltrn 29445  df-trl 29499
  Copyright terms: Public domain W3C validator