Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh2 Unicode version

Theorem cdlemh2 31452
Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b  |-  B  =  ( Base `  K
)
cdlemh.l  |-  .<_  =  ( le `  K )
cdlemh.j  |-  .\/  =  ( join `  K )
cdlemh.m  |-  ./\  =  ( meet `  K )
cdlemh.a  |-  A  =  ( Atoms `  K )
cdlemh.h  |-  H  =  ( LHyp `  K
)
cdlemh.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemh.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemh.s  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
cdlemh.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
cdlemh2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( S  ./\  W )  =  .0.  )

Proof of Theorem cdlemh2
StepHypRef Expression
1 simp11l 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  K  e.  HL )
2 hlol 29998 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
31, 2syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  K  e.  OL )
4 hllat 30000 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  K  e.  Lat )
6 simp2ll 1024 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  P  e.  A )
7 cdlemh.b . . . . . . 7  |-  B  =  ( Base `  K
)
8 cdlemh.a . . . . . . 7  |-  A  =  ( Atoms `  K )
97, 8atbase 29926 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
106, 9syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  P  e.  B )
11 simp11r 1069 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  W  e.  H )
121, 11jca 519 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simp13 989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  G  e.  T )
14 cdlemh.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
15 cdlemh.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
16 cdlemh.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
177, 14, 15, 16trlcl 30800 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  B
)
1812, 13, 17syl2anc 643 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  G )  e.  B )
19 cdlemh.j . . . . . 6  |-  .\/  =  ( join `  K )
207, 19latjcl 14467 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  ( R `  G )  e.  B )  -> 
( P  .\/  ( R `  G )
)  e.  B )
215, 10, 18, 20syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( P  .\/  ( R `  G ) )  e.  B )
22 simp2rl 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  Q  e.  A )
237, 8atbase 29926 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
2422, 23syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  Q  e.  B )
25 simp12 988 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  F  e.  T )
2614, 15ltrncnv 30782 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
2712, 25, 26syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  `' F  e.  T )
2814, 15ltrnco 31355 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
2912, 13, 27, 28syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( G  o.  `' F
)  e.  T )
307, 14, 15, 16trlcl 30800 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T
)  ->  ( R `  ( G  o.  `' F ) )  e.  B )
3112, 29, 30syl2anc 643 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  ( G  o.  `' F ) )  e.  B )
327, 19latjcl 14467 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( R `  ( G  o.  `' F ) )  e.  B )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B
)
335, 24, 31, 32syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B )
347, 14lhpbase 30634 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
3511, 34syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  W  e.  B )
36 cdlemh.m . . . . 5  |-  ./\  =  ( meet `  K )
377, 36latmassOLD 29866 . . . 4  |-  ( ( K  e.  OL  /\  ( ( P  .\/  ( R `  G ) )  e.  B  /\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) )  e.  B  /\  W  e.  B ) )  -> 
( ( ( P 
.\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )  ./\  W )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  W
) ) )
383, 21, 33, 35, 37syl13anc 1186 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
./\  W )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) 
./\  W ) ) )
39 simp2r 984 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
40 cdlemh.l . . . . . . . 8  |-  .<_  =  ( le `  K )
41 cdlemh.z . . . . . . . 8  |-  .0.  =  ( 0. `  K )
4240, 36, 41, 8, 14lhpmat 30666 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( Q  ./\  W
)  =  .0.  )
4312, 39, 42syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( Q  ./\  W )  =  .0.  )
4443oveq1d 6087 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( Q  ./\  W
)  .\/  ( R `  ( G  o.  `' F ) ) )  =  (  .0.  .\/  ( R `  ( G  o.  `' F ) ) ) )
4540, 14, 15, 16trlle 30820 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T
)  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
4612, 29, 45syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
477, 40, 19, 36, 8atmod4i2 30503 . . . . . 6  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  ( R `  ( G  o.  `' F
) )  e.  B  /\  W  e.  B
)  /\  ( R `  ( G  o.  `' F ) )  .<_  W )  ->  (
( Q  ./\  W
)  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) 
./\  W ) )
481, 22, 31, 35, 46, 47syl131anc 1197 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( Q  ./\  W
)  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) 
./\  W ) )
497, 19, 41olj02 29863 . . . . . 6  |-  ( ( K  e.  OL  /\  ( R `  ( G  o.  `' F ) )  e.  B )  ->  (  .0.  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( R `  ( G  o.  `' F ) ) )
503, 31, 49syl2anc 643 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (  .0.  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( R `  ( G  o.  `' F ) ) )
5144, 48, 503eqtr3rd 2476 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  ( G  o.  `' F ) )  =  ( ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  W
) )
5251oveq2d 6088 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( P  .\/  ( R `  G )
)  ./\  ( R `  ( G  o.  `' F ) ) )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  ./\  W
) ) )
53 simp2l 983 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
5413, 27jca 519 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( G  e.  T  /\  `' F  e.  T
) )
55 simp33 995 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  F )  =/=  ( R `  G
) )
5655necomd 2681 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  G )  =/=  ( R `  F
) )
5714, 15, 16trlcnv 30801 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
5812, 25, 57syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  `' F
)  =  ( R `
 F ) )
5956, 58neeqtrrd 2622 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  G )  =/=  ( R `  `' F ) )
60 simp31 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  F  =/=  (  _I  |`  B ) )
617, 14, 15ltrncnvnid 30763 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  `' F  =/=  (  _I  |`  B ) )
6212, 25, 60, 61syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  `' F  =/=  (  _I  |`  B ) )
637, 14, 15, 16trlcone 31364 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  `' F  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 `' F )  /\  `' F  =/=  (  _I  |`  B ) ) )  ->  ( R `  G )  =/=  ( R `  ( G  o.  `' F
) ) )
6412, 54, 59, 62, 63syl112anc 1188 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  G )  =/=  ( R `  ( G  o.  `' F
) ) )
65 simp32 994 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  G  =/=  (  _I  |`  B ) )
667, 8, 14, 15, 16trlnidat 30809 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  G  =/=  (  _I  |`  B ) )  ->  ( R `  G )  e.  A
)
6712, 13, 65, 66syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  G )  e.  A )
6840, 14, 15, 16trlle 30820 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  .<_  W )
6912, 13, 68syl2anc 643 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  G )  .<_  W )
708, 14, 15, 16trlcoat 31359 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  `' F  e.  T )  /\  ( R `  G )  =/=  ( R `  `' F ) )  -> 
( R `  ( G  o.  `' F
) )  e.  A
)
7112, 54, 59, 70syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
7240, 19, 36, 41, 8, 14lhp2at0 30668 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  G )  =/=  ( R `  ( G  o.  `' F ) ) )  /\  ( ( R `
 G )  e.  A  /\  ( R `
 G )  .<_  W )  /\  (
( R `  ( G  o.  `' F
) )  e.  A  /\  ( R `  ( G  o.  `' F
) )  .<_  W ) )  ->  ( ( P  .\/  ( R `  G ) )  ./\  ( R `  ( G  o.  `' F ) ) )  =  .0.  )
7312, 53, 64, 67, 69, 71, 46, 72syl322anc 1212 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( P  .\/  ( R `  G )
)  ./\  ( R `  ( G  o.  `' F ) ) )  =  .0.  )
7438, 52, 733eqtr2rd 2474 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  .0.  =  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  ./\  W ) )
75 cdlemh.s . . 3  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
7675oveq1i 6082 . 2  |-  ( S 
./\  W )  =  ( ( ( P 
.\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )  ./\  W )
7774, 76syl6reqr 2486 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( S  ./\  W )  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204    _I cid 4485   `'ccnv 4868    |` cres 4871    o. ccom 4873   ` cfv 5445  (class class class)co 6072   Basecbs 13457   lecple 13524   joincjn 14389   meetcmee 14390   0.cp0 14454   Latclat 14462   OLcol 29811   Atomscatm 29900   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   trLctrl 30794
This theorem is referenced by:  cdlemh  31453
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-map 7011  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795
  Copyright terms: Public domain W3C validator