Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj2 Unicode version

Theorem cdlemj2 30936
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate  p. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b  |-  B  =  ( Base `  K
)
cdlemj.h  |-  H  =  ( LHyp `  K
)
cdlemj.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemj.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemj.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemj2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( U `  h )  =  ( V `  h ) )

Proof of Theorem cdlemj2
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simpl1 960 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
) )
2 simpl2 961 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) ) )
3 simpl3l 1012 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  F )  =/=  ( R `  g )
)
4 simpl3r 1013 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  g )  =/=  ( R `  h )
)
5 simpr 448 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( p  e.  ( Atoms `  K )  /\  -.  p ( le
`  K ) W ) )
6 cdlemj.b . . . . . 6  |-  B  =  ( Base `  K
)
7 cdlemj.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemj.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemj.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
10 cdlemj.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
11 eqid 2387 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
12 eqid 2387 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
136, 7, 8, 9, 10, 11, 12cdlemj1 30935 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) ) )  ->  (
( U `  h
) `  p )  =  ( ( V `
 h ) `  p ) )
141, 2, 3, 4, 5, 13syl113anc 1196 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( U `  h ) `  p )  =  ( ( V `  h
) `  p )
)
1514exp32 589 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  (
p  e.  ( Atoms `  K )  ->  ( -.  p ( le `  K ) W  -> 
( ( U `  h ) `  p
)  =  ( ( V `  h ) `
 p ) ) ) )
1615ralrimiv 2731 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  A. p  e.  ( Atoms `  K )
( -.  p ( le `  K ) W  ->  ( ( U `  h ) `  p )  =  ( ( V `  h
) `  p )
) )
17 simp11 987 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 simp121 1089 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  U  e.  E )
19 simp133 1094 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  h  e.  T )
207, 8, 10tendocl 30881 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  h  e.  T
)  ->  ( U `  h )  e.  T
)
2117, 18, 19, 20syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( U `  h )  e.  T )
22 simp122 1090 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  V  e.  E )
237, 8, 10tendocl 30881 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  h  e.  T
)  ->  ( V `  h )  e.  T
)
2417, 22, 19, 23syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( V `  h )  e.  T )
2511, 12, 7, 8ltrneq 30263 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  h )  e.  T  /\  ( V `  h
)  e.  T )  ->  ( A. p  e.  ( Atoms `  K )
( -.  p ( le `  K ) W  ->  ( ( U `  h ) `  p )  =  ( ( V `  h
) `  p )
)  <->  ( U `  h )  =  ( V `  h ) ) )
2617, 21, 24, 25syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( A. p  e.  ( Atoms `  K ) ( -.  p ( le
`  K ) W  ->  ( ( U `
 h ) `  p )  =  ( ( V `  h
) `  p )
)  <->  ( U `  h )  =  ( V `  h ) ) )
2716, 26mpbid 202 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( U `  h )  =  ( V `  h ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   class class class wbr 4153    _I cid 4434    |` cres 4820   ` cfv 5394   Basecbs 13396   lecple 13463   Atomscatm 29378   HLchlt 29465   LHypclh 30098   LTrncltrn 30215   trLctrl 30272   TEndoctendo 30866
This theorem is referenced by:  cdlemj3  30937
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-map 6956  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-llines 29612  df-lplanes 29613  df-lvols 29614  df-lines 29615  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219  df-trl 30273  df-tendo 30869
  Copyright terms: Public domain W3C validator