Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Unicode version

Theorem cdlemj3 31012
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate  g. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b  |-  B  =  ( Base `  K
)
cdlemj.h  |-  H  =  ( LHyp `  K
)
cdlemj.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemj.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemj.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemj3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )

Proof of Theorem cdlemj3
Dummy variables  g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 eqid 2283 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2283 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 cdlemj.h . . . 4  |-  H  =  ( LHyp `  K
)
52, 3, 4lhpexle2 30199 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. u  e.  (
Atoms `  K ) ( u ( le `  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h
) ) )
61, 5syl 15 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  E. u  e.  ( Atoms `  K )
( u ( le
`  K ) W  /\  u  =/=  ( R `  F )  /\  u  =/=  ( R `  h )
) )
7 simpl1l 1006 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  K  e.  HL )
87adantr 451 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  K  e.  HL )
9 simpl1r 1007 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  W  e.  H )
109adantr 451 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  W  e.  H )
11 simprl 732 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u  e.  ( Atoms `  K ) )
12 simprr1 1003 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  u ( le `  K ) W )
13 cdlemj.b . . . . . . 7  |-  B  =  ( Base `  K
)
14 cdlemj.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
15 cdlemj.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
1613, 2, 3, 4, 14, 15cdlemfnid 30753 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  u ( le `  K ) W ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
178, 10, 11, 12, 16syl22anc 1183 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  ->  E. g  e.  T  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )
18 simp1l 979 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T
) ) )
19 simp1r 980 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  h  =/=  (  _I  |`  B ) )
20 simp3l 983 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  e.  T )
21 simp3rr 1029 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  g  =/=  (  _I  |`  B ) )
22 simp2r2 1058 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  F
) )
2322necomd 2529 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  u )
24 simp3rl 1028 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =  u )
2523, 24neeqtrrd 2470 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  F )  =/=  ( R `  g
) )
26 simp2r3 1059 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  u  =/=  ( R `  h
) )
2724, 26eqnetrd 2464 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( R `  g )  =/=  ( R `  h
) )
28 cdlemj.e . . . . . . . . . 10  |-  E  =  ( ( TEndo `  K
) `  W )
2913, 4, 14, 15, 28cdlemj2 31011 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  ( h  =/=  (  _I  |`  B )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  ( ( R `
 F )  =/=  ( R `  g
)  /\  ( R `  g )  =/=  ( R `  h )
) )  ->  ( U `  h )  =  ( V `  h ) )
3018, 19, 20, 21, 25, 27, 29syl132anc 1200 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) )  /\  (
g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) ) )  ->  ( U `  h )  =  ( V `  h ) )
31303expia 1153 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( ( g  e.  T  /\  ( ( R `  g )  =  u  /\  g  =/=  (  _I  |`  B ) ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3231exp3a 425 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( g  e.  T  ->  ( ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) ) )
3332rexlimdv 2666 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( E. g  e.  T  ( ( R `
 g )  =  u  /\  g  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) ) )
3417, 33mpd 14 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  /\  ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) ) ) )  -> 
( U `  h
)  =  ( V `
 h ) )
3534exp32 588 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( u  e.  ( Atoms `  K )  ->  ( ( u ( le `  K ) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) )  ->  ( U `  h )  =  ( V `  h ) ) ) )
3635rexlimdv 2666 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( E. u  e.  ( Atoms `  K ) ( u ( le `  K
) W  /\  u  =/=  ( R `  F
)  /\  u  =/=  ( R `  h ) )  ->  ( U `  h )  =  ( V `  h ) ) )
376, 36mpd 14 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023    _I cid 4304    |` cres 4691   ` cfv 5255   Basecbs 13148   lecple 13215   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347   TEndoctendo 30941
This theorem is referenced by:  tendocan  31013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator