Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk Unicode version

Theorem cdlemk 31456
Description: Lemma K of [Crawley] p. 118. Final result, lines 11 and 12 on p. 120: given two translations f and k with the same trace, there exists a trace-preserving endomorphism tau whose value at f is k. We use  F,  N, and  u to represent f, k, and tau. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
cdlemk7.h  |-  H  =  ( LHyp `  K
)
cdlemk7.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk7.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk7.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdlemk  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
Distinct variable groups:    u, E    u, F    u, K    u, N    u, R    u, T    u, W
Allowed substitution hint:    H( u)

Proof of Theorem cdlemk
Dummy variables  f 
b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2404 . . 3  |-  ( join `  K )  =  (
join `  K )
3 eqid 2404 . . 3  |-  ( meet `  K )  =  (
meet `  K )
4 eqid 2404 . . 3  |-  ( oc
`  K )  =  ( oc `  K
)
5 eqid 2404 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
6 cdlemk7.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemk7.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk7.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
9 eqid 2404 . . 3  |-  ( ( oc `  K ) `
 W )  =  ( ( oc `  K ) `  W
)
10 eqid 2404 . . 3  |-  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) )  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) )
11 eqid 2404 . . 3  |-  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  f ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( R `  b
) ) ( meet `  K ) ( ( N `  ( ( oc `  K ) `
 W ) ) ( join `  K
) ( R `  ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) )  =  ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  f ) ) (
meet `  K )
( ( ( ( ( oc `  K
) `  W )
( join `  K )
( R `  b
) ) ( meet `  K ) ( ( N `  ( ( oc `  K ) `
 W ) ) ( join `  K
) ( R `  ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) )
12 eqid 2404 . . 3  |-  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  f )
)  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) )  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) )
13 eqid 2404 . . 3  |-  ( f  e.  T  |->  if ( F  =  N , 
f ,  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  f )
)  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) )  =  ( f  e.  T  |->  if ( F  =  N , 
f ,  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  f )
)  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) )
14 cdlemk7.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemk56w 31455 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N ) )  -> 
( ( f  e.  T  |->  if ( F  =  N ,  f ,  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) )  e.  E  /\  ( ( f  e.  T  |->  if ( F  =  N ,  f ,  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) ) `  F )  =  N ) )
16 fveq1 5686 . . . 4  |-  ( u  =  ( f  e.  T  |->  if ( F  =  N ,  f ,  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) )  ->  ( u `  F )  =  ( ( f  e.  T  |->  if ( F  =  N ,  f ,  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) ) `  F ) )
1716eqeq1d 2412 . . 3  |-  ( u  =  ( f  e.  T  |->  if ( F  =  N ,  f ,  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) )  ->  ( (
u `  F )  =  N  <->  ( ( f  e.  T  |->  if ( F  =  N , 
f ,  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  ( Base `  K
) )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  f )
)  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) ) `  F )  =  N ) )
1817rspcev 3012 . 2  |-  ( ( ( f  e.  T  |->  if ( F  =  N ,  f ,  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) )  e.  E  /\  ( ( f  e.  T  |->  if ( F  =  N ,  f ,  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  ( Base `  K ) )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 f ) )  ->  ( z `  ( ( oc `  K ) `  W
) )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( R `
 f ) ) ( meet `  K
) ( ( ( ( ( oc `  K ) `  W
) ( join `  K
) ( R `  b ) ) (
meet `  K )
( ( N `  ( ( oc `  K ) `  W
) ) ( join `  K ) ( R `
 ( b  o.  `' F ) ) ) ) ( join `  K
) ( R `  ( f  o.  `' b ) ) ) ) ) ) ) ) `  F )  =  N )  ->  E. u  e.  E  ( u `  F
)  =  N )
1915, 18syl 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  ( R `  F )  =  ( R `  N ) )  ->  E. u  e.  E  ( u `  F
)  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   ifcif 3699    e. cmpt 4226    _I cid 4453   `'ccnv 4836    |` cres 4839    o. ccom 4841   ` cfv 5413  (class class class)co 6040   iota_crio 6501   Basecbs 13424   occoc 13492   joincjn 14356   meetcmee 14357   Atomscatm 29746   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   trLctrl 30640   TEndoctendo 31234
This theorem is referenced by:  tendoex  31457  cdleml2N  31459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237
  Copyright terms: Public domain W3C validator