Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11t Unicode version

Theorem cdlemk11t 29824
Description: Part of proof of Lemma K of [Crawley] p. 118. Eq. 5, line 36, p. 119.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 21-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk11t  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( [_ G  /  g ]_ X `  P ) 
.<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z
Allowed substitution hints:    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk11t
StepHypRef Expression
1 simp11l 1071 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  K  e.  HL )
2 simp11r 1072 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  W  e.  H )
3 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
4 cdlemk5.h . . . 4  |-  H  =  ( LHyp `  K
)
5 cdlemk5.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
73, 4, 5, 6cdlemftr3 29443 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. b  e.  T  ( b  =/=  (  _I  |`  B )  /\  ( ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G )  /\  ( R `  b )  =/=  ( R `  I ) ) ) )
81, 2, 7syl2anc 645 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  E. b  e.  T  ( b  =/=  (  _I  |`  B )  /\  ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b
)  =/=  ( R `
 I ) ) ) )
9 nfv 1629 . . 3  |-  F/ b ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )
10 nfcv 2385 . . . . . . 7  |-  F/_ b G
11 cdlemk5.x . . . . . . . 8  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
12 nfra1 2555 . . . . . . . . 9  |-  F/ b A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y )
13 nfcv 2385 . . . . . . . . 9  |-  F/_ b T
1412, 13nfriota 6200 . . . . . . . 8  |-  F/_ b
( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
1511, 14nfcxfr 2382 . . . . . . 7  |-  F/_ b X
1610, 15nfcsb 3043 . . . . . 6  |-  F/_ b [_ G  /  g ]_ X
17 nfcv 2385 . . . . . 6  |-  F/_ b P
1816, 17nffv 5384 . . . . 5  |-  F/_ b
( [_ G  /  g ]_ X `  P )
19 nfcv 2385 . . . . 5  |-  F/_ b  .<_
20 nfcv 2385 . . . . . . . 8  |-  F/_ b
I
2120, 15nfcsb 3043 . . . . . . 7  |-  F/_ b [_ I  /  g ]_ X
2221, 17nffv 5384 . . . . . 6  |-  F/_ b
( [_ I  /  g ]_ X `  P )
23 nfcv 2385 . . . . . 6  |-  F/_ b  .\/
24 nfcv 2385 . . . . . 6  |-  F/_ b
( R `  (
I  o.  `' G
) )
2522, 23, 24nfov 5733 . . . . 5  |-  F/_ b
( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) )
2618, 19, 25nfbr 3964 . . . 4  |-  F/ b ( [_ G  / 
g ]_ X `  P
)  .<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) )
2726a1i 12 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  F/ b ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) )
28 simp11 990 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) )
29 simp12 991 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
30 simp2 961 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  b  e.  T
)
31 simp3l 988 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  b  =/=  (  _I  |`  B ) )
32 simp3r1 1068 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( R `  b )  =/=  ( R `  F )
)
33 simp3r2 1069 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( R `  b )  =/=  ( R `  G )
)
3431, 32, 333jca 1137 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) )
35 simp13l 1075 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  I  e.  T
)
36 simp13r 1076 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  I  =/=  (  _I  |`  B ) )
37 simp3r3 1070 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( R `  b )  =/=  ( R `  I )
)
3835, 36, 373jca 1137 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) )
39 cdlemk5.l . . . . . 6  |-  .<_  =  ( le `  K )
40 cdlemk5.j . . . . . 6  |-  .\/  =  ( join `  K )
41 cdlemk5.m . . . . . 6  |-  ./\  =  ( meet `  K )
42 cdlemk5.a . . . . . 6  |-  A  =  ( Atoms `  K )
43 cdlemk5.z . . . . . 6  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
44 cdlemk5.y . . . . . 6  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
453, 39, 40, 41, 42, 4, 5, 6, 43, 44, 11cdlemk11tc 29823 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( [_ G  /  g ]_ X `  P ) 
.<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
4628, 29, 30, 34, 38, 45syl113anc 1199 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) )
47463exp 1155 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
b  e.  T  -> 
( ( b  =/=  (  _I  |`  B )  /\  ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b
)  =/=  ( R `
 I ) ) )  ->  ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) ) ) )
489, 27, 47rexlimd2 2627 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( E. b  e.  T  ( b  =/=  (  _I  |`  B )  /\  ( ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G )  /\  ( R `  b )  =/=  ( R `  I ) ) )  ->  ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) ) )
498, 48mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( [_ G  /  g ]_ X `  P ) 
.<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939   F/wnf 1539    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   [_csb 3009   class class class wbr 3920    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  cdlemk45  29825
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator