Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11t Unicode version

Theorem cdlemk11t 30302
Description: Part of proof of Lemma K of [Crawley] p. 118. Eq. 5, line 36, p. 119.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 21-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk11t  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( [_ G  /  g ]_ X `  P ) 
.<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z
Allowed substitution hints:    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk11t
StepHypRef Expression
1 simp11l 1071 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  K  e.  HL )
2 simp11r 1072 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  W  e.  H )
3 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
4 cdlemk5.h . . . 4  |-  H  =  ( LHyp `  K
)
5 cdlemk5.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
73, 4, 5, 6cdlemftr3 29921 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. b  e.  T  ( b  =/=  (  _I  |`  B )  /\  ( ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G )  /\  ( R `  b )  =/=  ( R `  I ) ) ) )
81, 2, 7syl2anc 645 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  E. b  e.  T  ( b  =/=  (  _I  |`  B )  /\  ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b
)  =/=  ( R `
 I ) ) ) )
9 nfv 1629 . . 3  |-  F/ b ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )
10 nfcv 2394 . . . . . . 7  |-  F/_ b G
11 cdlemk5.x . . . . . . . 8  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
12 nfra1 2568 . . . . . . . . 9  |-  F/ b A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y )
13 nfcv 2394 . . . . . . . . 9  |-  F/_ b T
1412, 13nfriota 6282 . . . . . . . 8  |-  F/_ b
( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
1511, 14nfcxfr 2391 . . . . . . 7  |-  F/_ b X
1610, 15nfcsb 3090 . . . . . 6  |-  F/_ b [_ G  /  g ]_ X
17 nfcv 2394 . . . . . 6  |-  F/_ b P
1816, 17nffv 5465 . . . . 5  |-  F/_ b
( [_ G  /  g ]_ X `  P )
19 nfcv 2394 . . . . 5  |-  F/_ b  .<_
20 nfcv 2394 . . . . . . . 8  |-  F/_ b
I
2120, 15nfcsb 3090 . . . . . . 7  |-  F/_ b [_ I  /  g ]_ X
2221, 17nffv 5465 . . . . . 6  |-  F/_ b
( [_ I  /  g ]_ X `  P )
23 nfcv 2394 . . . . . 6  |-  F/_ b  .\/
24 nfcv 2394 . . . . . 6  |-  F/_ b
( R `  (
I  o.  `' G
) )
2522, 23, 24nfov 5815 . . . . 5  |-  F/_ b
( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) )
2618, 19, 25nfbr 4041 . . . 4  |-  F/ b ( [_ G  / 
g ]_ X `  P
)  .<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) )
2726a1i 12 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  F/ b ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) )
28 simp11 990 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) )
29 simp12 991 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
30 simp2 961 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  b  e.  T
)
31 simp3l 988 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  b  =/=  (  _I  |`  B ) )
32 simp3r1 1068 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( R `  b )  =/=  ( R `  F )
)
33 simp3r2 1069 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( R `  b )  =/=  ( R `  G )
)
3431, 32, 333jca 1137 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) )
35 simp13l 1075 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  I  e.  T
)
36 simp13r 1076 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  I  =/=  (  _I  |`  B ) )
37 simp3r3 1070 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( R `  b )  =/=  ( R `  I )
)
3835, 36, 373jca 1137 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) )
39 cdlemk5.l . . . . . 6  |-  .<_  =  ( le `  K )
40 cdlemk5.j . . . . . 6  |-  .\/  =  ( join `  K )
41 cdlemk5.m . . . . . 6  |-  ./\  =  ( meet `  K )
42 cdlemk5.a . . . . . 6  |-  A  =  ( Atoms `  K )
43 cdlemk5.z . . . . . 6  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
44 cdlemk5.y . . . . . 6  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
453, 39, 40, 41, 42, 4, 5, 6, 43, 44, 11cdlemk11tc 30301 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( [_ G  /  g ]_ X `  P ) 
.<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
4628, 29, 30, 34, 38, 45syl113anc 1199 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b )  =/=  ( R `  I
) ) ) )  ->  ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) )
47463exp 1155 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
b  e.  T  -> 
( ( b  =/=  (  _I  |`  B )  /\  ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )  /\  ( R `  b
)  =/=  ( R `
 I ) ) )  ->  ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) ) ) )
489, 27, 47rexlimd2 2640 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( E. b  e.  T  ( b  =/=  (  _I  |`  B )  /\  ( ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G )  /\  ( R `  b )  =/=  ( R `  I ) ) )  ->  ( [_ G  /  g ]_ X `  P )  .<_  ( (
[_ I  /  g ]_ X `  P ) 
.\/  ( R `  ( I  o.  `' G ) ) ) ) )
498, 48mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( [_ G  /  g ]_ X `  P ) 
.<_  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939   F/wnf 1539    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   [_csb 3056   class class class wbr 3997    _I cid 4276   `'ccnv 4660    |` cres 4663    o. ccom 4665   ` cfv 4673  (class class class)co 5792   iota_crio 6263   Basecbs 13110   lecple 13177   joincjn 14040   meetcmee 14041   Atomscatm 28620   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   trLctrl 29514
This theorem is referenced by:  cdlemk45  30303
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515
  Copyright terms: Public domain W3C validator