Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11ta Unicode version

Theorem cdlemk11ta 31191
Description: Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119.  G,  I stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5c.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk5a.u2  |-  C  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  b ) `
 P )  .\/  ( R `  ( e  o.  `' b ) ) ) ) ) )
Assertion
Ref Expression
cdlemk11ta  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  [_ G  /  g ]_ Y  .<_  ( [_ I  /  g ]_ Y  .\/  ( R `  (
I  o.  `' G
) ) ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b    g, G, e    f, g, i, j, e,  ./\    .<_ , i, j    .\/ , e, f, i, j    A, i, j    f, F, i, j    e, G, j    i, H, j   
i, K, j    f, N, i, j    P, e, f, i, j    R, e, f, i, j    e,
b, j, S    T, e, f, i, j    e, W, f, i, j    f,
b, i    e, F    e, I, g, j
Allowed substitution hints:    A( e, f, g, b)    B( e, f, i, j, b)    C( e, f, g, i, j, b)    P( b)    R( b)    S( f, g, i)    T( b)    F( g, b)    G( f, i, b)    H( e, f, g, b)    I( f, i, b)    .\/ ( b)    K( e, f, g, b)    .<_ ( e, f, g, b)    ./\ ( b)    N( e, g, b)    W( g, b)    Y( e, f, g, i, j, b)    Z( e, f, i, j, b)

Proof of Theorem cdlemk11ta
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp12l 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  F  e.  T )
3 simp31 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
b  e.  T )
4 simp21 988 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  N  e.  T )
5 simp13l 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  G  e.  T )
6 simp331 1108 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  I  e.  T )
74, 5, 63jca 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( N  e.  T  /\  G  e.  T  /\  I  e.  T
) )
8 simp22 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
9 simp23 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( R `  F
)  =  ( R `
 N ) )
10 simp12r 1069 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  F  =/=  (  _I  |`  B ) )
11 simp321 1105 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
b  =/=  (  _I  |`  B ) )
12 simp13r 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  G  =/=  (  _I  |`  B ) )
1310, 11, 123jca 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) ) )
14 simp332 1109 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  I  =/=  (  _I  |`  B ) )
15 simp322 1106 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( R `  b
)  =/=  ( R `
 F ) )
16 simp323 1107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( R `  b
)  =/=  ( R `
 G ) )
1716necomd 2531 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( R `  G
)  =/=  ( R `
 b ) )
18 simp333 1110 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( R `  b
)  =/=  ( R `
 I ) )
1918necomd 2531 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( R `  I
)  =/=  ( R `
 b ) )
2015, 17, 193jca 1132 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( ( R `  b )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 b )  /\  ( R `  I )  =/=  ( R `  b ) ) )
21 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
22 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
23 cdlemk5.j . . . 4  |-  .\/  =  ( join `  K )
24 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
25 cdlemk5.a . . . 4  |-  A  =  ( Atoms `  K )
26 cdlemk5.h . . . 4  |-  H  =  ( LHyp `  K
)
27 cdlemk5.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
28 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
29 cdlemk5c.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
30 eqid 2285 . . . 4  |-  ( S `
 b )  =  ( S `  b
)
31 cdlemk5a.u2 . . . 4  |-  C  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  b ) `
 P )  .\/  ( R `  ( e  o.  `' b ) ) ) ) ) )
32 eqid 2285 . . . 4  |-  ( ( ( G `  P
)  .\/  ( I `  P ) )  ./\  ( ( R `  ( G  o.  `' b ) )  .\/  ( R `  ( I  o.  `' b ) ) ) )  =  ( ( ( G `
 P )  .\/  ( I `  P
) )  ./\  (
( R `  ( G  o.  `' b
) )  .\/  ( R `  ( I  o.  `' b ) ) ) )
3321, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32cdlemk11u 31133 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  b  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  I  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  I  =/=  (  _I  |`  B )  /\  ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  b )  /\  ( R `  I
)  =/=  ( R `
 b ) ) ) )  ->  (
( C `  G
) `  P )  .<_  ( ( ( C `
 I ) `  P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
341, 2, 3, 7, 8, 9, 13, 14, 20, 33syl333anc 1214 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( ( C `  G ) `  P
)  .<_  ( ( ( C `  I ) `
 P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
35 simp32 992 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) )
363, 35jca 518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )
37 cdlemk5.z . . . 4  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
38 cdlemk5.y . . . 4  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
3921, 22, 23, 24, 25, 26, 27, 28, 37, 38, 29, 31cdlemkyuu 31190 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
) ) )  ->  [_ G  /  g ]_ Y  =  (
( C `  G
) `  P )
)
4036, 39syld3an3 1227 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  [_ G  /  g ]_ Y  =  (
( C `  G
) `  P )
)
41 simp12 986 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )
426, 14jca 518 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )
43 simp2 956 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
4411, 15, 183jca 1132 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  I
) ) )
4521, 22, 23, 24, 25, 26, 27, 28, 37, 38, 29, 31cdlemkyuu 31190 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  [_ I  /  g ]_ Y  =  (
( C `  I
) `  P )
)
461, 41, 42, 43, 3, 44, 45syl312anc 1203 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  [_ I  /  g ]_ Y  =  (
( C `  I
) `  P )
)
4746oveq1d 5875 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  -> 
( [_ I  /  g ]_ Y  .\/  ( R `
 ( I  o.  `' G ) ) )  =  ( ( ( C `  I ) `
 P )  .\/  ( R `  ( I  o.  `' G ) ) ) )
4834, 40, 473brtr4d 4055 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  [_ G  /  g ]_ Y  .<_  ( [_ I  /  g ]_ Y  .\/  ( R `  (
I  o.  `' G
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   [_csb 3083   class class class wbr 4025    e. cmpt 4079    _I cid 4306   `'ccnv 4690    |` cres 4693    o. ccom 4695   ` cfv 5257  (class class class)co 5860   iota_crio 6299   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   Atomscatm 29526   HLchlt 29613   LHypclh 30246   LTrncltrn 30363   trLctrl 30420
This theorem is referenced by:  cdlemk11tb  31193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-map 6776  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-llines 29760  df-lplanes 29761  df-lvols 29762  df-lines 29763  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250  df-laut 30251  df-ldil 30366  df-ltrn 30367  df-trl 30421
  Copyright terms: Public domain W3C validator