Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11tb Unicode version

Theorem cdlemk11tb 29921
Description: Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119.  G,  I stand for g, h. cdlemk11ta 29919 with hypotheses removed. TODO: Can this be proved directly with no quantification? (Contributed by NM, 21-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
Assertion
Ref Expression
cdlemk11tb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  [_ G  /  g ]_ Y  .<_  ( [_ I  /  g ]_ Y  .\/  ( R `  (
I  o.  `' G
) ) ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b    g, G   
g, I    ./\ , b    .\/ , b    F, b    N, b    P, b    R, b    T, b
Allowed substitution hints:    A( g, b)    B( b)    F( g)    G( b)    H( g, b)    I(
b)    K( g, b)    .<_ ( g, b)    N( g)    W( g, b)    Y( g, b)    Z( b)

Proof of Theorem cdlemk11tb
StepHypRef Expression
1 cdlemk5.b . 2  |-  B  =  ( Base `  K
)
2 cdlemk5.l . 2  |-  .<_  =  ( le `  K )
3 cdlemk5.j . 2  |-  .\/  =  ( join `  K )
4 cdlemk5.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemk5.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemk5.h . 2  |-  H  =  ( LHyp `  K
)
7 cdlemk5.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk5.r . 2  |-  R  =  ( ( trL `  K
) `  W )
9 cdlemk5.z . 2  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
10 cdlemk5.y . 2  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
11 eqid 2253 . 2  |-  ( f  e.  T  |->  ( iota_ i  e.  T ( i `
 P )  =  ( ( P  .\/  ( R `  f ) )  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) )  =  ( f  e.  T  |->  (
iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
12 eqid 2253 . 2  |-  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( ( f  e.  T  |->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  f )
)  ./\  ( ( N `  P )  .\/  ( R `  (
f  o.  `' F
) ) ) ) ) ) `  b
) `  P )  .\/  ( R `  (
e  o.  `' b ) ) ) ) ) )  =  ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) ) `  b ) `
 P )  .\/  ( R `  ( e  o.  `' b ) ) ) ) ) )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemk11ta 29919 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( b  e.  T  /\  (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  I )
) ) )  ->  [_ G  /  g ]_ Y  .<_  ( [_ I  /  g ]_ Y  .\/  ( R `  (
I  o.  `' G
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   [_csb 3009   class class class wbr 3920    e. cmpt 3974    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   ` cfv 4592  (class class class)co 5710   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28254   HLchlt 28341   LHypclh 28974   LTrncltrn 29091   trLctrl 29148
This theorem is referenced by:  cdlemk11tc  29935
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28167  df-ol 28169  df-oml 28170  df-covers 28257  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-llines 28488  df-lplanes 28489  df-lvols 28490  df-lines 28491  df-psubsp 28493  df-pmap 28494  df-padd 28786  df-lhyp 28978  df-laut 28979  df-ldil 29094  df-ltrn 29095  df-trl 29149
  Copyright terms: Public domain W3C validator