Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk11u-2N Unicode version

Theorem cdlemk11u-2N 31700
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 17, p. 119, showing Eq. 3 (line 8, p. 119) for the sigma2 ( Z) case. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b  |-  B  =  ( Base `  K
)
cdlemk2.l  |-  .<_  =  ( le `  K )
cdlemk2.j  |-  .\/  =  ( join `  K )
cdlemk2.m  |-  ./\  =  ( meet `  K )
cdlemk2.a  |-  A  =  ( Atoms `  K )
cdlemk2.h  |-  H  =  ( LHyp `  K
)
cdlemk2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk2.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk2.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk2.q  |-  Q  =  ( S `  C
)
cdlemk2.v  |-  V  =  ( d  e.  T  |->  ( iota_ k  e.  T
( k `  P
)  =  ( ( P  .\/  ( R `
 d ) ) 
./\  ( ( Q `
 P )  .\/  ( R `  ( d  o.  `' C ) ) ) ) ) )
cdlemk2.z  |-  Z  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' C ) )  .\/  ( R `  ( X  o.  `' C ) ) ) )
Assertion
Ref Expression
cdlemk11u-2N  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( V `  G ) `  P )  .<_  ( ( ( V `  X
) `  P )  .\/  ( R `  ( X  o.  `' G
) ) ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    C, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , d    .\/ , d    C, d, k    G, d, k    Q, d    P, d    R, d    T, d    W, d    ./\ , k    .<_ , k    .\/ , k    A, k    C, k    k, F   
k, H    k, K    k, N    Q, k    P, k    R, k    T, k    k, W    F, d    X, d, k
Allowed substitution hints:    A( f, d)    B( f, i, k, d)    Q( f, i)    S( f, i, k, d)    G( f, i)    H( f, d)    K( f, d)    .<_ ( f, d)    N( d)    V( f, i, k, d)    X( f, i)    Z( f, i, k, d)

Proof of Theorem cdlemk11u-2N
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  HL )
2 simp12 986 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  H )
31, 2jca 518 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simp211 1093 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T )
5 simp212 1094 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  e.  T )
6 simp213 1095 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  N  e.  T )
7 simp22l 1074 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  e.  T )
8 simp23l 1076 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  X  e.  T )
96, 7, 83jca 1132 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N  e.  T  /\  G  e.  T  /\  X  e.  T ) )
10 simp33 993 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
11 simp13 987 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  =  ( R `  N ) )
12 simp32l 1080 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  =/=  (  _I  |`  B ) )
13 simp32r 1081 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  C  =/=  (  _I  |`  B ) )
14 simp22r 1075 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  =/=  (  _I  |`  B ) )
1512, 13, 143jca 1132 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) ) )
16 simp23r 1077 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  X  =/=  (  _I  |`  B ) )
17 simp31 991 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( R `  C )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  X
)  =/=  ( R `
 C ) ) )
18 cdlemk2.b . . 3  |-  B  =  ( Base `  K
)
19 cdlemk2.l . . 3  |-  .<_  =  ( le `  K )
20 cdlemk2.j . . 3  |-  .\/  =  ( join `  K )
21 cdlemk2.m . . 3  |-  ./\  =  ( meet `  K )
22 cdlemk2.a . . 3  |-  A  =  ( Atoms `  K )
23 cdlemk2.h . . 3  |-  H  =  ( LHyp `  K
)
24 cdlemk2.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
25 cdlemk2.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
26 cdlemk2.s . . 3  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
27 cdlemk2.q . . 3  |-  Q  =  ( S `  C
)
28 cdlemk2.v . . 3  |-  V  =  ( d  e.  T  |->  ( iota_ k  e.  T
( k `  P
)  =  ( ( P  .\/  ( R `
 d ) ) 
./\  ( ( Q `
 P )  .\/  ( R `  ( d  o.  `' C ) ) ) ) ) )
29 cdlemk2.z . . 3  |-  Z  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' C ) )  .\/  ( R `  ( X  o.  `' C ) ) ) )
3018, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29cdlemk11u 31682 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  C  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 C )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  X
)  =/=  ( R `
 C ) ) ) )  ->  (
( V `  G
) `  P )  .<_  ( ( ( V `
 X ) `  P )  .\/  ( R `  ( X  o.  `' G ) ) ) )
313, 4, 5, 9, 10, 11, 15, 16, 17, 30syl333anc 1214 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  C  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( X  e.  T  /\  X  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  X )  =/=  ( R `  C ) )  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( V `  G ) `  P )  .<_  ( ( ( V `  X
) `  P )  .\/  ( R `  ( X  o.  `' G
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039    e. cmpt 4093    _I cid 4320   `'ccnv 4704    |` cres 4707    o. ccom 4709   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator