Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk18-3N Unicode version

Theorem cdlemk18-3N 31065
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119.  N,  Y,  O,  D are k, sigma2 (p), k1, f1. (Contributed by NM, 7-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk18-3N  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( D Y F ) `  P )  =  ( N `  P ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, D, e, f, i    f, F, i    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j    j, W    F, d, e
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( f, i)    H( e, f, d)    K( e, f, d)    .<_ ( e, f, d)    N( e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk18-3N
StepHypRef Expression
1 simp22 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  D  e.  T
)
2 simp21 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T
)
3 cdlemk3.b . . . . 5  |-  B  =  ( Base `  K
)
4 cdlemk3.l . . . . 5  |-  .<_  =  ( le `  K )
5 cdlemk3.j . . . . 5  |-  .\/  =  ( join `  K )
6 cdlemk3.m . . . . 5  |-  ./\  =  ( meet `  K )
7 cdlemk3.a . . . . 5  |-  A  =  ( Atoms `  K )
8 cdlemk3.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 cdlemk3.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemk3.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
11 cdlemk3.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
12 cdlemk3.u1 . . . . 5  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
13 eqid 2380 . . . . 5  |-  ( S `
 D )  =  ( S `  D
)
14 eqid 2380 . . . . 5  |-  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) )  =  ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
153, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemkuu 31060 . . . 4  |-  ( ( D  e.  T  /\  F  e.  T )  ->  ( D Y F )  =  ( ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) ) `  F ) )
161, 2, 15syl2anc 643 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( D Y F )  =  ( ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) ) `  F ) )
1716fveq1d 5663 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( D Y F ) `  P )  =  ( ( ( e  e.  T  |->  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) ) `  F
) `  P )
)
183, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14cdlemk18-2N 31051 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( N `  P )  =  ( ( ( e  e.  T  |->  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) ) `  F
) `  P )
)
1917, 18eqtr4d 2415 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T
)  /\  ( ( R `  D )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( D Y F ) `  P )  =  ( N `  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   class class class wbr 4146    e. cmpt 4200    _I cid 4427   `'ccnv 4810    |` cres 4813    o. ccom 4815   ` cfv 5387  (class class class)co 6013    e. cmpt2 6015   iota_crio 6471   Basecbs 13389   lecple 13456   joincjn 14321   meetcmee 14322   Atomscatm 29429   HLchlt 29516   LHypclh 30149   LTrncltrn 30266   trLctrl 30323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-undef 6472  df-riota 6478  df-map 6949  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-llines 29663  df-lplanes 29664  df-lvols 29665  df-lines 29666  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153  df-laut 30154  df-ldil 30269  df-ltrn 30270  df-trl 30324
  Copyright terms: Public domain W3C validator