Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19 Unicode version

Theorem cdlemk19 30209
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119.  N,  U,  O,  D are k, sigma1 (p), k1, f1. (Contributed by NM, 2-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b  |-  B  =  ( Base `  K
)
cdlemk1.l  |-  .<_  =  ( le `  K )
cdlemk1.j  |-  .\/  =  ( join `  K )
cdlemk1.m  |-  ./\  =  ( meet `  K )
cdlemk1.a  |-  A  =  ( Atoms `  K )
cdlemk1.h  |-  H  =  ( LHyp `  K
)
cdlemk1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk1.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk1.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk1.o  |-  O  =  ( S `  D
)
cdlemk1.u  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
Assertion
Ref Expression
cdlemk19  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( U `  F )  =  N )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    D, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , e    .\/ , e    D, e, j    e, O    P, e    R, e    T, e   
e, W    ./\ , j    .<_ , j    .\/ , j    A, j    D, j   
j, F    j, H    j, K    j, N    j, O    P, j    R, j    T, j    j, W    e, F
Allowed substitution hints:    A( e, f)    B( e, f, i, j)    S( e, f, i, j)    U( e, f, i, j)    H( e, f)    K( e, f)    .<_ ( e, f)    N( e)    O( f, i)

Proof of Theorem cdlemk19
StepHypRef Expression
1 simp11 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  N  e.  T
)
3 simp23 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( R `  F )  =  ( R `  N ) )
4 simp12 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  F  e.  T
)
5 simp13 992 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  D  e.  T
)
6 simp33 998 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( R `  D )  =/=  ( R `  F )
)
76, 6jca 520 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  D )  =/=  ( R `  F )
) )
8 simp31 996 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  F  =/=  (  _I  |`  B ) )
9 simp32 997 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  D  =/=  (  _I  |`  B ) )
108, 8, 93jca 1137 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) ) )
11 simp22 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
12 cdlemk1.b . . . . 5  |-  B  =  ( Base `  K
)
13 cdlemk1.l . . . . 5  |-  .<_  =  ( le `  K )
14 cdlemk1.j . . . . 5  |-  .\/  =  ( join `  K )
15 cdlemk1.m . . . . 5  |-  ./\  =  ( meet `  K )
16 cdlemk1.a . . . . 5  |-  A  =  ( Atoms `  K )
17 cdlemk1.h . . . . 5  |-  H  =  ( LHyp `  K
)
18 cdlemk1.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
19 cdlemk1.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
20 cdlemk1.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
21 cdlemk1.o . . . . 5  |-  O  =  ( S `  D
)
22 cdlemk1.u . . . . 5  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
2312, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22cdlemkuel 30205 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  F  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  D )  =/=  ( R `  F )
)  /\  ( F  =/=  (  _I  |`  B )  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( U `  F )  e.  T
)
241, 3, 4, 4, 5, 2, 7, 10, 11, 23syl333anc 1219 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( U `  F )  e.  T
)
2512, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22cdlemk18 30208 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( N `  P )  =  ( ( U `  F
) `  P )
)
2613, 16, 17, 18cdlemd 29547 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  ( U `  F )  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( N `  P )  =  ( ( U `  F
) `  P )
)  ->  N  =  ( U `  F ) )
271, 2, 24, 11, 25, 26syl311anc 1201 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  N  =  ( U `  F ) )
2827eqcomd 2261 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( U `  F )  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983    e. cmpt 4037    _I cid 4262   `'ccnv 4646    |` cres 4649    o. ccom 4651   ` cfv 4659  (class class class)co 5778   iota_crio 6249   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   Atomscatm 28604   HLchlt 28691   LHypclh 29324   LTrncltrn 29441   trLctrl 29498
This theorem is referenced by:  cdlemk19-2N  30227  cdlemk19ylem  30270
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-map 6728  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-llines 28838  df-lplanes 28839  df-lvols 28840  df-lines 28841  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328  df-laut 29329  df-ldil 29444  df-ltrn 29445  df-trl 29499
  Copyright terms: Public domain W3C validator