Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk20 Unicode version

Theorem cdlemk20 30193
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be fi. Our  D,  C,  O,  Q,  U,  V represent their f1, f2, k1, k2, sigma1, sigma2. (Contributed by NM, 5-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b  |-  B  =  ( Base `  K
)
cdlemk1.l  |-  .<_  =  ( le `  K )
cdlemk1.j  |-  .\/  =  ( join `  K )
cdlemk1.m  |-  ./\  =  ( meet `  K )
cdlemk1.a  |-  A  =  ( Atoms `  K )
cdlemk1.h  |-  H  =  ( LHyp `  K
)
cdlemk1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk1.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk1.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk1.o  |-  O  =  ( S `  D
)
cdlemk1.u  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
cdlemk2a.q  |-  Q  =  ( S `  C
)
Assertion
Ref Expression
cdlemk20  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( U `  C ) `  P
)  =  ( Q `
 P ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    D, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , e    .\/ , e    D, e, j    e, O    P, e    R, e    T, e   
e, W    ./\ , j    .<_ , j    .\/ , j    A, j    D, j   
j, F    j, H    j, K    j, N    j, O    P, j    R, j    T, j    j, W    e, F, f, i    C, e   
f, j, C, i
Allowed substitution hints:    A( e, f)    B( e, f, i, j)    Q( e, f, i, j)    S( e, f, i, j)    U( e, f, i, j)    H( e, f)    K( e, f)    .<_ ( e, f)    N( e)    O( f, i)

Proof of Theorem cdlemk20
StepHypRef Expression
1 simp11 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp23 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( R `  F
)  =  ( R `
 N ) )
3 simp21r 1078 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  ->  C  e.  T )
4 simp12 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  ->  F  e.  T )
5 simp13 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  ->  D  e.  T )
6 simp21l 1077 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  ->  N  e.  T )
7 simp3r1 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( R `  D
)  =/=  ( R `
 F ) )
8 simp3r3 1070 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( R `  C
)  =/=  ( R `
 D ) )
98necomd 2502 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( R `  D
)  =/=  ( R `
 C ) )
107, 9jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( R `  D )  =/=  ( R `  F )  /\  ( R `  D
)  =/=  ( R `
 C ) ) )
11 simp3l1 1065 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  ->  F  =/=  (  _I  |`  B ) )
12 simp3l3 1067 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  ->  C  =/=  (  _I  |`  B ) )
13 simp3l2 1066 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  ->  D  =/=  (  _I  |`  B ) )
1411, 12, 133jca 1137 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) ) )
15 simp22 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
16 cdlemk1.b . . . 4  |-  B  =  ( Base `  K
)
17 cdlemk1.l . . . 4  |-  .<_  =  ( le `  K )
18 cdlemk1.j . . . 4  |-  .\/  =  ( join `  K )
19 cdlemk1.m . . . 4  |-  ./\  =  ( meet `  K )
20 cdlemk1.a . . . 4  |-  A  =  ( Atoms `  K )
21 cdlemk1.h . . . 4  |-  H  =  ( LHyp `  K
)
22 cdlemk1.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
23 cdlemk1.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
24 cdlemk1.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
25 cdlemk1.o . . . 4  |-  O  =  ( S `  D
)
26 cdlemk1.u . . . 4  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
2716, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26cdlemkuv2 30186 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  C  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  D )  =/=  ( R `  C )
)  /\  ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( U `  C ) `  P )  =  ( ( P  .\/  ( R `  C )
)  ./\  ( ( O `  P )  .\/  ( R `  ( C  o.  `' D
) ) ) ) )
281, 2, 3, 4, 5, 6, 10, 14, 15, 27syl333anc 1219 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( U `  C ) `  P
)  =  ( ( P  .\/  ( R `
 C ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( C  o.  `' D ) ) ) ) )
2917, 18, 20, 21, 22, 23trljat1 29485 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  C  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  C
) )  =  ( P  .\/  ( C `
 P ) ) )
301, 3, 15, 29syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( P  .\/  ( R `  C )
)  =  ( P 
.\/  ( C `  P ) ) )
3125fveq1i 5424 . . . . 5  |-  ( O `
 P )  =  ( ( S `  D ) `  P
)
3231a1i 12 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( O `  P
)  =  ( ( S `  D ) `
 P ) )
3321, 22, 23trlcocnv 30039 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  C  e.  T  /\  D  e.  T
)  ->  ( R `  ( C  o.  `' D ) )  =  ( R `  ( D  o.  `' C
) ) )
341, 3, 5, 33syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( R `  ( C  o.  `' D
) )  =  ( R `  ( D  o.  `' C ) ) )
3532, 34oveq12d 5775 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( O `  P )  .\/  ( R `  ( C  o.  `' D ) ) )  =  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( D  o.  `' C ) ) ) )
3630, 35oveq12d 5775 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( P  .\/  ( R `  C ) )  ./\  ( ( O `  P )  .\/  ( R `  ( C  o.  `' D
) ) ) )  =  ( ( P 
.\/  ( C `  P ) )  ./\  ( ( ( S `
 D ) `  P )  .\/  ( R `  ( D  o.  `' C ) ) ) ) )
37 cdlemk2a.q . . . 4  |-  Q  =  ( S `  C
)
3837fveq1i 5424 . . 3  |-  ( Q `
 P )  =  ( ( S `  C ) `  P
)
396, 5jca 520 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( N  e.  T  /\  D  e.  T
) )
40 simp3r2 1069 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( R `  C
)  =/=  ( R `
 F ) )
4140, 7jca 520 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( R `  C )  =/=  ( R `  F )  /\  ( R `  D
)  =/=  ( R `
 F ) ) )
4216, 17, 18, 20, 21, 22, 23, 19, 24cdlemk12 30169 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  C  e.  T )  /\  (
( N  e.  T  /\  D  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  C )  =/=  ( R `  D
) ) )  -> 
( ( S `  C ) `  P
)  =  ( ( P  .\/  ( C `
 P ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( D  o.  `' C ) ) ) ) )
431, 4, 3, 39, 15, 2, 14, 41, 8, 42syl333anc 1219 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( S `  C ) `  P
)  =  ( ( P  .\/  ( C `
 P ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( D  o.  `' C ) ) ) ) )
4438, 43syl5req 2301 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( P  .\/  ( C `  P ) )  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  ( D  o.  `' C
) ) ) )  =  ( Q `  P ) )
4528, 36, 443eqtrd 2292 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  C )  =/=  ( R `  F
)  /\  ( R `  C )  =/=  ( R `  D )
) ) )  -> 
( ( U `  C ) `  P
)  =  ( Q `
 P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963    e. cmpt 4017    _I cid 4241   `'ccnv 4625    |` cres 4628    o. ccom 4630   ` cfv 4638  (class class class)co 5757   iota_crio 6228   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   Atomscatm 28583   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477
This theorem is referenced by:  cdlemk20-2N  30211  cdlemk22  30212
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478
  Copyright terms: Public domain W3C validator