Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk22-3 Unicode version

Theorem cdlemk22-3 30241
Description: Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=1 and j=2. (Contributed by NM, 7-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk22-3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  (
( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, D, e, f, i    f, F, i    G, d, e, j   
i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j    j, W    F, d, e    .<_ , e    C, d, e, f, i, j   
f, G, i
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( f, i)    H( e, f, d)    K( e, f, d)    .<_ ( f, d)    N( e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk22-3
StepHypRef Expression
1 cdlemk3.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemk3.l . . 3  |-  .<_  =  ( le `  K )
3 cdlemk3.j . . 3  |-  .\/  =  ( join `  K )
4 cdlemk3.m . . 3  |-  ./\  =  ( meet `  K )
5 cdlemk3.a . . 3  |-  A  =  ( Atoms `  K )
6 cdlemk3.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemk3.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk3.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
9 cdlemk3.s . . 3  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
10 eqid 2256 . . 3  |-  ( S `
 C )  =  ( S `  C
)
11 eqid 2256 . . 3  |-  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( S `  C
) `  P )  .\/  ( R `  (
e  o.  `' C
) ) ) ) ) )  =  ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  C ) `
 P )  .\/  ( R `  ( e  o.  `' C ) ) ) ) ) )
12 eqid 2256 . . 3  |-  ( S `
 D )  =  ( S `  D
)
13 eqid 2256 . . 3  |-  ( e  e.  T  |->  ( iota_ j  e.  T ( j `
 P )  =  ( ( P  .\/  ( R `  e ) )  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) )  =  ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cdlemk22 30233 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  (
( ( e  e.  T  |->  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) ) `  G
) `  P )  =  ( ( ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  C ) `
 P )  .\/  ( R `  ( e  o.  `' C ) ) ) ) ) ) `  G ) `
 P ) )
15 simp13 992 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  D  e.  T )
16 simp212 1099 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  G  e.  T )
17 cdlemk3.u1 . . . . 5  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 17, 12, 13cdlemkuu 30235 . . . 4  |-  ( ( D  e.  T  /\  G  e.  T )  ->  ( D Y G )  =  ( ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) ) `  G ) )
1915, 16, 18syl2anc 645 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  ( D Y G )  =  ( ( e  e.  T  |->  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( S `  D
) `  P )  .\/  ( R `  (
e  o.  `' D
) ) ) ) ) ) `  G
) )
2019fveq1d 5446 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  (
( D Y G ) `  P )  =  ( ( ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) ) `  G ) `
 P ) )
21 simp213 1100 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  C  e.  T )
221, 2, 3, 4, 5, 6, 7, 8, 9, 17, 10, 11cdlemkuu 30235 . . . 4  |-  ( ( C  e.  T  /\  G  e.  T )  ->  ( C Y G )  =  ( ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  C ) `
 P )  .\/  ( R `  ( e  o.  `' C ) ) ) ) ) ) `  G ) )
2321, 16, 22syl2anc 645 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  ( C Y G )  =  ( ( e  e.  T  |->  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  e )
)  ./\  ( (
( S `  C
) `  P )  .\/  ( R `  (
e  o.  `' C
) ) ) ) ) ) `  G
) )
2423fveq1d 5446 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  (
( C Y G ) `  P )  =  ( ( ( e  e.  T  |->  (
iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  C ) `
 P )  .\/  ( R `  ( e  o.  `' C ) ) ) ) ) ) `  G ) `
 P ) )
2514, 20, 243eqtr4d 2298 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  C  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( C  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  C
)  =/=  ( R `
 D ) ) ) )  ->  (
( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983    e. cmpt 4037    _I cid 4262   `'ccnv 4646    |` cres 4649    o. ccom 4651   ` cfv 4659  (class class class)co 5778    e. cmpt2 5780   iota_crio 6249   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   Atomscatm 28604   HLchlt 28691   LHypclh 29324   LTrncltrn 29441   trLctrl 29498
This theorem is referenced by:  cdlemk23-3  30242  cdlemk25-3  30244
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-map 6728  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-llines 28838  df-lplanes 28839  df-lvols 28840  df-lines 28841  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328  df-laut 29329  df-ldil 29444  df-ltrn 29445  df-trl 29499
  Copyright terms: Public domain W3C validator