Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk26-3 Unicode version

Theorem cdlemk26-3 29784
Description: Part of proof of Lemma K of [Crawley] p. 118. Eliminate the  x requirements from cdlemk25-3 29782. (Contributed by NM, 10-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk26-3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  -> 
( ( D Y G ) `  P
)  =  ( ( C Y G ) `
 P ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, D, e, f, i    f, F, i    G, d, e, j   
i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j    j, W    F, d, e    .<_ , e    C, d, e, f, i, j   
f, G, i
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( f, i)    H( e, f, d)    K( e, f, d)    .<_ ( f, d)    N( e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk26-3
StepHypRef Expression
1 simp11l 1071 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  K  e.  HL )
2 simp11r 1072 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  W  e.  H )
3 cdlemk3.b . . . 4  |-  B  =  ( Base `  K
)
4 cdlemk3.h . . . 4  |-  H  =  ( LHyp `  K
)
5 cdlemk3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 cdlemk3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
73, 4, 5, 6cdlemftr3 29443 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )
81, 2, 7syl2anc 645 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )
9 simp111 1089 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simp112 1090 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( F  e.  T  /\  D  e.  T  /\  N  e.  T ) )
11 simp13l 1075 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  G  e.  T )
12113ad2ant1 981 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  G  e.  T )
13 simp13r 1076 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  C  e.  T )
14133ad2ant1 981 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  C  e.  T )
15 simp2 961 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  x  e.  T )
1612, 14, 153jca 1137 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( G  e.  T  /\  C  e.  T  /\  x  e.  T ) )
17 simp121 1092 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
18 simp122 1093 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( R `  F )  =  ( R `  N )  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) ) )
19 simp23l 1081 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  G  =/=  (  _I  |`  B ) )
20193ad2ant1 981 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
21 simp23r 1082 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  ->  C  =/=  (  _I  |`  B ) )
22213ad2ant1 981 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  C  =/=  (  _I  |`  B ) )
23 simp3l 988 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  x  =/=  (  _I  |`  B ) )
2420, 22, 233jca 1137 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )
25 simp13l 1075 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( R `  G )  =/=  ( R `  C
)  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D
)  =/=  ( R `
 F ) ) )
26 simp13r 1076 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  G )  =/=  ( R `  D )
)
27 simp3r3 1070 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  x )  =/=  ( R `  D )
)
28 simp3r1 1068 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  x )  =/=  ( R `  F )
)
29 simp3r2 1069 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  x )  =/=  ( R `  G )
)
3029necomd 2495 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( R `  G )  =/=  ( R `  x )
)
3127, 28, 303jca 1137 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( R `  x )  =/=  ( R `  D
)  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G
)  =/=  ( R `
 x ) ) )
32 cdlemk3.l . . . . 5  |-  .<_  =  ( le `  K )
33 cdlemk3.j . . . . 5  |-  .\/  =  ( join `  K )
34 cdlemk3.m . . . . 5  |-  ./\  =  ( meet `  K )
35 cdlemk3.a . . . . 5  |-  A  =  ( Atoms `  K )
36 cdlemk3.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
37 cdlemk3.u1 . . . . 5  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
383, 32, 33, 34, 35, 4, 5, 6, 36, 37cdlemk25-3 29782 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T  /\  x  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )  /\  (
( ( R `  G )  =/=  ( R `  C )  /\  ( R `  C
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  F ) )  /\  ( R `  G )  =/=  ( R `  D )  /\  (
( R `  x
)  =/=  ( R `
 D )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  x
) ) ) )  ->  ( ( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
399, 10, 16, 17, 18, 24, 25, 26, 31, 38syl333anc 1219 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  /\  x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G )  /\  ( R `  x )  =/=  ( R `  D ) ) ) )  ->  ( ( D Y G ) `  P )  =  ( ( C Y G ) `  P ) )
4039rexlimdv3a 2631 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  -> 
( E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( ( R `
 x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )  /\  ( R `  x
)  =/=  ( R `
 D ) ) )  ->  ( ( D Y G ) `  P )  =  ( ( C Y G ) `  P ) ) )
418, 40mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( G  e.  T  /\  C  e.  T
) )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( R `
 F )  =  ( R `  N
)  /\  F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( G  =/=  (  _I  |`  B )  /\  C  =/=  (  _I  |`  B ) ) )  /\  ( ( ( R `  G
)  =/=  ( R `
 C )  /\  ( R `  C )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  -> 
( ( D Y G ) `  P
)  =  ( ( C Y G ) `
 P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   class class class wbr 3920    e. cmpt 3974    _I cid 4197   `'ccnv 4579    |` cres 4582    o. ccom 4584   ` cfv 4592  (class class class)co 5710    e. cmpt2 5712   iota_crio 6181   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  cdlemk27-3  29785
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-lplanes 28377  df-lvols 28378  df-lines 28379  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator