Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk26b-3 Unicode version

Theorem cdlemk26b-3 31541
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
Assertion
Ref Expression
cdlemk26b-3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. x  e.  T  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, e, f, i, F    G, d,
e, j    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i    ./\ , j    .<_ , j    .\/ , j    A, j    j, F    j, H    j, K    j, N    P, j    R, j    S, d, e, j    T, j   
j, W    F, d,
e    .<_ , e    f, G, i    x, d, e, f, i, j    x,  .<_    x, A    x, B    x, F    x, G    x, H    x, K    x, N    x, P    x, R    x, T    x, Y    x, W
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( x, f, i)    H( e, f, d)    .\/ ( x)    K( e, f, d)    .<_ ( f, d)    ./\ (
x)    N( e, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk26b-3
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 cdlemk3.b . . . 4  |-  B  =  ( Base `  K
)
3 cdlemk3.h . . . 4  |-  H  =  ( LHyp `  K
)
4 cdlemk3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 cdlemk3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5cdlemftr2 31202 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x )  =/=  ( R `  G
) ) )
71, 6syl 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. x  e.  T  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) )
8 simp3r 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
) )
9 simp11 987 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simp133 1094 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
11 simp131 1092 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  G  e.  T )
12 simp121 1089 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  F  e.  T )
13 simp3l 985 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  x  e.  T )
14 simp123 1091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  N  e.  T )
15 simp3r2 1066 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  x )  =/=  ( R `  F
) )
16 simp3r3 1067 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  x )  =/=  ( R `  G
) )
1715, 16jca 519 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  x
)  =/=  ( R `
 F )  /\  ( R `  x )  =/=  ( R `  G ) ) )
18 simp122 1090 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  F  =/=  (  _I  |`  B ) )
19 simp132 1093 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
20 simp3r1 1065 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  x  =/=  (  _I  |`  B ) )
2118, 19, 203jca 1134 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) ) )
22 simp2 958 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
23 cdlemk3.l . . . . . . . 8  |-  .<_  =  ( le `  K )
24 cdlemk3.j . . . . . . . 8  |-  .\/  =  ( join `  K )
25 cdlemk3.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
26 cdlemk3.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
27 cdlemk3.s . . . . . . . 8  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
28 cdlemk3.u1 . . . . . . . 8  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
292, 23, 24, 25, 26, 3, 4, 5, 27, 28cdlemkuel-3 31534 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  x  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  x  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( x Y G )  e.  T
)
309, 10, 11, 12, 13, 14, 17, 21, 22, 29syl333anc 1216 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
x Y G )  e.  T )
318, 30jca 519 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) ) ) )  ->  (
( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x )  =/=  ( R `  G
) )  /\  (
x Y G )  e.  T ) )
32313expia 1155 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
x  e.  T  /\  ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x )  =/=  ( R `  G
) ) )  -> 
( ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F )  /\  ( R `  x
)  =/=  ( R `
 G ) )  /\  ( x Y G )  e.  T
) ) )
3332exp3a 426 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  e.  T  ->  ( ( x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  ->  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) ) ) )
3433reximdvai 2808 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( E. x  e.  T  (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  ->  E. x  e.  T  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) ) )
357, 34mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =  ( R `  N ) ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. x  e.  T  ( (
x  =/=  (  _I  |`  B )  /\  ( R `  x )  =/=  ( R `  F
)  /\  ( R `  x )  =/=  ( R `  G )
)  /\  ( x Y G )  e.  T
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204    e. cmpt 4258    _I cid 4485   `'ccnv 4868    |` cres 4871    o. ccom 4873   ` cfv 5445  (class class class)co 6072    e. cmpt2 6074   iota_crio 6533   Basecbs 13457   lecple 13524   joincjn 14389   meetcmee 14390   Atomscatm 29900   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   trLctrl 30794
This theorem is referenced by:  cdlemk28-3  31544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-map 7011  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795
  Copyright terms: Public domain W3C validator