Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk3 Structured version   Unicode version

Theorem cdlemk3 31568
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( F `
 P ) )

Proof of Theorem cdlemk3
StepHypRef Expression
1 simp1l 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  HL )
2 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2l 983 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T )
4 simp32l 1082 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  =/=  (  _I  |`  B ) )
5 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
6 cdlemk.a . . . 4  |-  A  =  ( Atoms `  K )
7 cdlemk.h . . . 4  |-  H  =  ( LHyp `  K
)
8 cdlemk.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
105, 6, 7, 8, 9trlnidat 30908 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A
)
112, 3, 4, 10syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  e.  A
)
12 simp2r 984 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  e.  T )
13 simp31 993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
146, 7, 8, 9trlcocnvat 31459 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  F  e.  T )  /\  ( R `  G )  =/=  ( R `  F
) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
152, 12, 3, 13, 14syl121anc 1189 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
16 simp33l 1084 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  P  e.  A )
17 cdlemk.l . . . 4  |-  .<_  =  ( le `  K )
1817, 6, 7, 8ltrnat 30875 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
192, 3, 16, 18syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( F `  P )  e.  A
)
207, 8ltrncnv 30881 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
212, 3, 20syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  `' F  e.  T )
227, 8, 9trlcnv 30900 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
232, 3, 22syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
2413necomd 2682 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
2523, 24eqnetrd 2617 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  `' F )  =/=  ( R `  G )
)
26 simp32r 1083 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  =/=  (  _I  |`  B ) )
275, 7, 8, 9trlcone 31463 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( `' F  e.  T  /\  G  e.  T )  /\  (
( R `  `' F )  =/=  ( R `  G )  /\  G  =/=  (  _I  |`  B ) ) )  ->  ( R `  `' F )  =/=  ( R `  ( `' F  o.  G )
) )
282, 21, 12, 25, 26, 27syl122anc 1193 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  `' F )  =/=  ( R `  ( `' F  o.  G )
) )
297, 8ltrncom 31473 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' F  e.  T  /\  G  e.  T )  ->  ( `' F  o.  G
)  =  ( G  o.  `' F ) )
302, 21, 12, 29syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( `' F  o.  G )  =  ( G  o.  `' F ) )
3130fveq2d 5725 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  ( `' F  o.  G ) )  =  ( R `  ( G  o.  `' F
) ) )
3228, 23, 313netr3d 2625 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  =/=  ( R `  ( G  o.  `' F ) ) )
33 simp33 995 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3417, 6, 7, 8ltrnel 30874 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
3534simprd 450 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  ( F `  P )  .<_  W )
362, 3, 33, 35syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  -.  ( F `  P )  .<_  W )
3717, 7, 8, 9trlle 30919 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
382, 3, 37syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  .<_  W )
397, 8ltrnco 31454 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
402, 12, 21, 39syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( G  o.  `' F )  e.  T
)
4117, 7, 8, 9trlle 30919 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T
)  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
422, 40, 41syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
43 hllat 30099 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
441, 43syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  Lat )
455, 6atbase 30025 . . . . . . 7  |-  ( ( R `  F )  e.  A  ->  ( R `  F )  e.  B )
4611, 45syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  F )  e.  B
)
475, 6atbase 30025 . . . . . . 7  |-  ( ( R `  ( G  o.  `' F ) )  e.  A  -> 
( R `  ( G  o.  `' F
) )  e.  B
)
4815, 47syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  B )
49 simp1r 982 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  H )
505, 7lhpbase 30733 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  B )
5149, 50syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  B )
52 cdlemk.j . . . . . . 7  |-  .\/  =  ( join `  K )
535, 17, 52latjle12 14484 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  B  /\  ( R `  ( G  o.  `' F
) )  e.  B  /\  W  e.  B
) )  ->  (
( ( R `  F )  .<_  W  /\  ( R `  ( G  o.  `' F ) )  .<_  W )  <->  ( ( R `  F
)  .\/  ( R `  ( G  o.  `' F ) ) ) 
.<_  W ) )
5444, 46, 48, 51, 53syl13anc 1186 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( R `  F
)  .<_  W  /\  ( R `  ( G  o.  `' F ) )  .<_  W )  <->  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F
) ) )  .<_  W ) )
5538, 42, 54mpbi2and 888 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F
) ) )  .<_  W )
565, 6atbase 30025 . . . . . 6  |-  ( ( F `  P )  e.  A  ->  ( F `  P )  e.  B )
5719, 56syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( F `  P )  e.  B
)
585, 52, 6hlatjcl 30102 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R `  F )  e.  A  /\  ( R `  ( G  o.  `' F ) )  e.  A )  ->  (
( R `  F
)  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B )
591, 11, 15, 58syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F
) ) )  e.  B )
605, 17lattr 14478 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( F `  P )  e.  B  /\  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F ) ) )  e.  B  /\  W  e.  B ) )  -> 
( ( ( F `
 P )  .<_  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F ) ) )  /\  ( ( R `
 F )  .\/  ( R `  ( G  o.  `' F ) ) )  .<_  W )  ->  ( F `  P )  .<_  W ) )
6144, 57, 59, 51, 60syl13anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .<_  ( ( R `
 F )  .\/  ( R `  ( G  o.  `' F ) ) )  /\  (
( R `  F
)  .\/  ( R `  ( G  o.  `' F ) ) ) 
.<_  W )  ->  ( F `  P )  .<_  W ) )
6255, 61mpan2d 656 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( F `  P )  .<_  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F ) ) )  ->  ( F `  P )  .<_  W ) )
6336, 62mtod 170 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  -.  ( F `  P )  .<_  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F ) ) ) )
64 cdlemk.m . . 3  |-  ./\  =  ( meet `  K )
6517, 52, 64, 62llnma2 30524 . 2  |-  ( ( K  e.  HL  /\  ( ( R `  F )  e.  A  /\  ( R `  ( G  o.  `' F
) )  e.  A  /\  ( F `  P
)  e.  A )  /\  ( ( R `
 F )  =/=  ( R `  ( G  o.  `' F
) )  /\  -.  ( F `  P ) 
.<_  ( ( R `  F )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )  ->  (
( ( F `  P )  .\/  ( R `  F )
)  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )  =  ( F `  P ) )
661, 11, 15, 19, 32, 63, 65syl132anc 1202 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( F `
 P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4205    _I cid 4486   `'ccnv 4870    |` cres 4873    o. ccom 4875   ` cfv 5447  (class class class)co 6074   Basecbs 13462   lecple 13529   joincjn 14394   meetcmee 14395   Latclat 14467   Atomscatm 29999   HLchlt 30086   LHypclh 30719   LTrncltrn 30836   trLctrl 30893
This theorem is referenced by:  cdlemk5a  31570
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-undef 6536  df-riota 6542  df-map 7013  df-poset 14396  df-plt 14408  df-lub 14424  df-glb 14425  df-join 14426  df-meet 14427  df-p0 14461  df-p1 14462  df-lat 14468  df-clat 14530  df-oposet 29912  df-ol 29914  df-oml 29915  df-covers 30002  df-ats 30003  df-atl 30034  df-cvlat 30058  df-hlat 30087  df-llines 30233  df-lplanes 30234  df-lvols 30235  df-lines 30236  df-psubsp 30238  df-pmap 30239  df-padd 30531  df-lhyp 30723  df-laut 30724  df-ldil 30839  df-ltrn 30840  df-trl 30894
  Copyright terms: Public domain W3C validator