Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk33N Unicode version

Theorem cdlemk33N 30265
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. TODO: not needed, is embodied in cdlemk34 30266. (Contributed by NM, 18-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk3.b  |-  B  =  ( Base `  K
)
cdlemk3.l  |-  .<_  =  ( le `  K )
cdlemk3.j  |-  .\/  =  ( join `  K )
cdlemk3.m  |-  ./\  =  ( meet `  K )
cdlemk3.a  |-  A  =  ( Atoms `  K )
cdlemk3.h  |-  H  =  ( LHyp `  K
)
cdlemk3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk3.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk3.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk3.u1  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
cdlemk3.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) ) )
Assertion
Ref Expression
cdlemk33N  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( b Y G ) `  P ) ) ) )
Distinct variable groups:    e, d,
f, i,  ./\    .<_ , i    .\/ , d, e, f, i    A, i    j, d, e, f, i, F    G, d,
e, j    i, H    i, K    f, N, i    P, d, e, f, i    R, d, e, f, i    T, d, e, f, i    W, d, e, f, i, b    ./\ , j    .<_ , j    .\/ , j    A, j    j, F   
j, H    j, K    j, N    P, j    R, j   
b, d, S, e, j    T, j    j, W    F, d, e    .<_ , e    f, G, i    .<_ , b    A, b, z    B, b, z    F, b, z    G, b, z    H, b    K, b    N, b    P, b    R, b, z    T, b, z    W, b, z    Y, b, z   
z, d, e, f, i, j    z,  .<_    z, A    z, H    z, K    z, N    z, P
Allowed substitution hints:    A( e, f, d)    B( e, f, i, j, d)    S( z, f, i)    H( e, f, d)    .\/ ( z, b)    K( e, f, d)    .<_ ( f, d)    ./\ ( z, b)    N( e, d)    X( z, e, f, i, j, b, d)    Y( e, f, i, j, d)

Proof of Theorem cdlemk33N
StepHypRef Expression
1 cdlemk3.x . 2  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) ) )
2 fveq1 5457 . . . . . . . . 9  |-  ( z  =  ( b Y G )  ->  (
z `  P )  =  ( ( b Y G ) `  P ) )
3 simpl11 1035 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  K  e.  HL )
4 simpl12 1036 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  W  e.  H )
53, 4jca 520 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simpl31 1041 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  z  e.  T )
7 simp11 990 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  K  e.  HL )
8 simp12 991 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  W  e.  H )
97, 8jca 520 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simp13 992 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
11 simp22l 1079 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  G  e.  T )
129, 10, 113jca 1137 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T
) )
1312adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T ) )
14 simp211 1098 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  F  e.  T )
15 simp32 997 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  b  e.  T )
16 simp213 1100 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  N  e.  T )
1714, 15, 163jca 1137 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )
)
1817adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( F  e.  T  /\  b  e.  T  /\  N  e.  T ) )
19 simp332 1114 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  F
) )
20 simp333 1115 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  ( R `  b )  =/=  ( R `  G
) )
2119, 20jca 520 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G ) ) )
22 simp212 1099 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  F  =/=  (  _I  |`  B ) )
23 simp22r 1080 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
24 simp331 1113 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  b  =/=  (  _I  |`  B ) )
2522, 23, 243jca 1137 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) ) )
26 simp23 995 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
2721, 25, 263jca 1137 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  (
( ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
2827adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( (
( R `  b
)  =/=  ( R `
 F )  /\  ( R `  b )  =/=  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
29 cdlemk3.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  K
)
30 cdlemk3.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
31 cdlemk3.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
32 cdlemk3.m . . . . . . . . . . . . 13  |-  ./\  =  ( meet `  K )
33 cdlemk3.a . . . . . . . . . . . . 13  |-  A  =  ( Atoms `  K )
34 cdlemk3.h . . . . . . . . . . . . 13  |-  H  =  ( LHyp `  K
)
35 cdlemk3.t . . . . . . . . . . . . 13  |-  T  =  ( ( LTrn `  K
) `  W )
36 cdlemk3.r . . . . . . . . . . . . 13  |-  R  =  ( ( trL `  K
) `  W )
37 cdlemk3.s . . . . . . . . . . . . 13  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
38 cdlemk3.u1 . . . . . . . . . . . . 13  |-  Y  =  ( d  e.  T ,  e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( ( S `  d ) `
 P )  .\/  ( R `  ( e  o.  `' d ) ) ) ) ) )
3929, 30, 31, 32, 33, 34, 35, 36, 37, 38cdlemkuel-3 30254 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  b  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  b  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( b Y G )  e.  T
)
4013, 18, 28, 39syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( b Y G )  e.  T
)
41 simpl23 1040 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
42 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  ( z `  P )  =  ( ( b Y G ) `  P ) )
4330, 33, 34, 35cdlemd 29563 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  z  e.  T  /\  (
b Y G )  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  z  =  ( b Y G ) )
445, 6, 40, 41, 42, 43syl311anc 1201 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) ) )  /\  ( z `  P )  =  ( ( b Y G ) `  P ) )  ->  z  =  ( b Y G ) )
4544ex 425 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  (
( z `  P
)  =  ( ( b Y G ) `
 P )  -> 
z  =  ( b Y G ) ) )
462, 45impbid2 197 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) ) ) )  ->  (
z  =  ( b Y G )  <->  ( z `  P )  =  ( ( b Y G ) `  P ) ) )
47463expia 1158 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
z  e.  T  /\  b  e.  T  /\  ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) ) )  -> 
( z  =  ( b Y G )  <-> 
( z `  P
)  =  ( ( b Y G ) `
 P ) ) ) )
48473expd 1173 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( z  e.  T  ->  ( b  e.  T  ->  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  (
z  =  ( b Y G )  <->  ( z `  P )  =  ( ( b Y G ) `  P ) ) ) ) ) )
4948imp31 423 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  /\  z  e.  T )  /\  b  e.  T )  ->  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  (
z  =  ( b Y G )  <->  ( z `  P )  =  ( ( b Y G ) `  P ) ) ) )
5049pm5.74d 240 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  /\  z  e.  T )  /\  b  e.  T )  ->  (
( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  z  =  ( b Y G ) )  <->  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( b Y G ) `  P ) ) ) )
5150ralbidva 2534 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `
 F )  =  ( R `  N
) )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  /\  z  e.  T
)  ->  ( A. b  e.  T  (
( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b )  =/=  ( R `  G
) )  ->  z  =  ( b Y G ) )  <->  A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  ( z `  P )  =  ( ( b Y G ) `  P ) ) ) )
5251riotabidva 6289 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( iota_ z  e.  T A. b  e.  T  ( (
b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F
)  /\  ( R `  b )  =/=  ( R `  G )
)  ->  z  =  ( b Y G ) ) )  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( b Y G ) `  P ) ) ) )
531, 52syl5eq 2302 1  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  ( ( b Y G ) `  P ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   class class class wbr 3997    e. cmpt 4051    _I cid 4276   `'ccnv 4660    |` cres 4663    o. ccom 4665   ` cfv 4673  (class class class)co 5792    e. cmpt2 5794   iota_crio 6263   Basecbs 13110   lecple 13177   joincjn 14040   meetcmee 14041   Atomscatm 28620   HLchlt 28707   LHypclh 29340   LTrncltrn 29457   trLctrl 29514
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515
  Copyright terms: Public domain W3C validator