Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39 Unicode version

Theorem cdlemk39 30256
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 31, p. 119. Trace-preserving property of tau, represented by  X. (Contributed by NM, 19-Jul-2013.)
Hypotheses
Ref Expression
cdlemk4.b  |-  B  =  ( Base `  K
)
cdlemk4.l  |-  .<_  =  ( le `  K )
cdlemk4.j  |-  .\/  =  ( join `  K )
cdlemk4.m  |-  ./\  =  ( meet `  K )
cdlemk4.a  |-  A  =  ( Atoms `  K )
cdlemk4.h  |-  H  =  ( LHyp `  K
)
cdlemk4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk4.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk4.y  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b
) ) ) )
cdlemk4.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk39  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  G
) )
Distinct variable groups:    z, b,  ./\    .<_ , b, z    .\/ , b, z    A, b, z    B, b, z    F, b, z    G, b, z    H, b, z    K, b, z    N, b, z    P, b, z    R, b, z    T, b, z    W, b, z    z, Y
Allowed substitution hints:    X( z, b)    Y( b)    Z( z, b)

Proof of Theorem cdlemk39
StepHypRef Expression
1 simp1l 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  K  e.  HL )
2 simp3ll 1031 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  P  e.  A )
3 simp1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simp22l 1079 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  e.  T )
5 simp22r 1080 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  =/=  (  _I  |`  B ) )
6 cdlemk4.b . . . . . . 7  |-  B  =  ( Base `  K
)
7 cdlemk4.a . . . . . . 7  |-  A  =  ( Atoms `  K )
8 cdlemk4.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
9 cdlemk4.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemk4.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
116, 7, 8, 9, 10trlnidat 29513 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  G  =/=  (  _I  |`  B ) )  ->  ( R `  G )  e.  A
)
123, 4, 5, 11syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  G )  e.  A )
13 cdlemk4.l . . . . . 6  |-  .<_  =  ( le `  K )
14 cdlemk4.j . . . . . 6  |-  .\/  =  ( join `  K )
1513, 14, 7hlatlej1 28715 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  G )  e.  A )  ->  P  .<_  ( P  .\/  ( R `  G ) ) )
161, 2, 12, 15syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  P  .<_  ( P  .\/  ( R `  G )
) )
17 cdlemk4.m . . . . 5  |-  ./\  =  ( meet `  K )
18 cdlemk4.z . . . . 5  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
19 cdlemk4.y . . . . 5  |-  Y  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b
) ) ) )
20 cdlemk4.x . . . . 5  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 G ) )  ->  ( z `  P )  =  Y ) )
216, 13, 14, 17, 7, 8, 9, 10, 18, 19, 20cdlemk38 30255 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( X `  P )  .<_  ( P  .\/  ( R `  G )
) )
22 hllat 28704 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
231, 22syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  K  e.  Lat )
246, 7atbase 28630 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
252, 24syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  P  e.  B )
266, 13, 14, 17, 7, 8, 9, 10, 18, 19, 20cdlemk35 30252 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  X  e.  T )
2713, 7, 8, 9ltrnat 29480 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  P  e.  A
)  ->  ( X `  P )  e.  A
)
283, 26, 2, 27syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( X `  P )  e.  A )
296, 7atbase 28630 . . . . . 6  |-  ( ( X `  P )  e.  A  ->  ( X `  P )  e.  B )
3028, 29syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( X `  P )  e.  B )
316, 14, 7hlatjcl 28707 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  G )  e.  A )  -> 
( P  .\/  ( R `  G )
)  e.  B )
321, 2, 12, 31syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( P  .\/  ( R `  G ) )  e.  B )
336, 13, 14latjle12 14116 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( X `  P
)  e.  B  /\  ( P  .\/  ( R `
 G ) )  e.  B ) )  ->  ( ( P 
.<_  ( P  .\/  ( R `  G )
)  /\  ( X `  P )  .<_  ( P 
.\/  ( R `  G ) ) )  <-> 
( P  .\/  ( X `  P )
)  .<_  ( P  .\/  ( R `  G ) ) ) )
3423, 25, 30, 32, 33syl13anc 1189 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
( P  .<_  ( P 
.\/  ( R `  G ) )  /\  ( X `  P ) 
.<_  ( P  .\/  ( R `  G )
) )  <->  ( P  .\/  ( X `  P
) )  .<_  ( P 
.\/  ( R `  G ) ) ) )
3516, 21, 34mpbi2and 892 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( P  .\/  ( X `  P ) )  .<_  ( P  .\/  ( R `
 G ) ) )
366, 14, 7hlatjcl 28707 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( X `  P )  e.  A )  -> 
( P  .\/  ( X `  P )
)  e.  B )
371, 2, 28, 36syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( P  .\/  ( X `  P ) )  e.  B )
38 simp1r 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  W  e.  H )
396, 8lhpbase 29338 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
4038, 39syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  W  e.  B )
416, 13, 17latmlem1 14135 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  ( X `  P ) )  e.  B  /\  ( P  .\/  ( R `
 G ) )  e.  B  /\  W  e.  B ) )  -> 
( ( P  .\/  ( X `  P ) )  .<_  ( P  .\/  ( R `  G
) )  ->  (
( P  .\/  ( X `  P )
)  ./\  W )  .<_  ( ( P  .\/  ( R `  G ) )  ./\  W )
) )
4223, 37, 32, 40, 41syl13anc 1189 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
( P  .\/  ( X `  P )
)  .<_  ( P  .\/  ( R `  G ) )  ->  ( ( P  .\/  ( X `  P ) )  ./\  W )  .<_  ( ( P  .\/  ( R `  G ) )  ./\  W ) ) )
4335, 42mpd 16 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  (
( P  .\/  ( X `  P )
)  ./\  W )  .<_  ( ( P  .\/  ( R `  G ) )  ./\  W )
)
44 simp3l 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4513, 14, 17, 7, 8, 9, 10trlval2 29503 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  X )  =  ( ( P  .\/  ( X `  P )
)  ./\  W )
)
463, 26, 44, 45syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  =  ( ( P 
.\/  ( X `  P ) )  ./\  W ) )
4713, 14, 17, 7, 8, 9, 10trlval5 29529 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( R `  G )
)  ./\  W )
)
483, 4, 44, 47syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  G )  =  ( ( P 
.\/  ( R `  G ) )  ./\  W ) )
4943, 46, 483brtr4d 4013 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  G
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   class class class wbr 3983    _I cid 4262   `'ccnv 4646    |` cres 4649    o. ccom 4651   ` cfv 4659  (class class class)co 5778   iota_crio 6249   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   Latclat 14099   Atomscatm 28604   HLchlt 28691   LHypclh 29324   LTrncltrn 29441   trLctrl 29498
This theorem is referenced by:  cdlemk39s  30279
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-map 6728  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-llines 28838  df-lplanes 28839  df-lvols 28840  df-lines 28841  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328  df-laut 29329  df-ldil 29444  df-ltrn 29445  df-trl 29499
  Copyright terms: Public domain W3C validator