Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk4 Structured version   Unicode version

Theorem cdlemk4 31568
Description: Part of proof of Lemma K of [Crawley] p. 118, last line. We use  X for their h, since  H is already used. (Contributed by NM, 24-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( X `  P ) 
.\/  ( R `  ( X  o.  `' F ) ) ) )

Proof of Theorem cdlemk4
StepHypRef Expression
1 simp1l 981 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
2 simp1 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
4 simp3l 985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
5 cdlemk.l . . . . 5  |-  .<_  =  ( le `  K )
6 cdlemk.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdlemk.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdlemk.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnat 30874 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
102, 3, 4, 9syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
11 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  e.  T )
125, 6, 7, 8ltrnat 30874 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  P  e.  A
)  ->  ( X `  P )  e.  A
)
132, 11, 4, 12syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  e.  A
)
14 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
155, 14, 6hlatlej1 30109 . . 3  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( X `  P )  e.  A )  ->  ( F `  P )  .<_  ( ( F `  P )  .\/  ( X `  P )
) )
161, 10, 13, 15syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( X `  P ) ) )
17 hllat 30098 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
181, 17syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
19 cdlemk.b . . . . . . 7  |-  B  =  ( Base `  K
)
2019, 6atbase 30024 . . . . . 6  |-  ( ( F `  P )  e.  A  ->  ( F `  P )  e.  B )
2110, 20syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  B
)
2219, 6atbase 30024 . . . . . 6  |-  ( ( X `  P )  e.  A  ->  ( X `  P )  e.  B )
2313, 22syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  e.  B
)
2419, 14latjcl 14471 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F `  P )  e.  B  /\  ( X `  P )  e.  B )  ->  (
( F `  P
)  .\/  ( X `  P ) )  e.  B )
2518, 21, 23, 24syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  e.  B
)
26 simp1r 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
2719, 7lhpbase 30732 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
2826, 27syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  B )
295, 14, 6hlatlej2 30110 . . . . 5  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( X `  P )  e.  A )  ->  ( X `  P )  .<_  ( ( F `  P )  .\/  ( X `  P )
) )
301, 10, 13, 29syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  .<_  ( ( F `  P ) 
.\/  ( X `  P ) ) )
31 cdlemk.m . . . . 5  |-  ./\  =  ( meet `  K )
3219, 5, 14, 31, 6atmod3i1 30598 . . . 4  |-  ( ( K  e.  HL  /\  ( ( X `  P )  e.  A  /\  ( ( F `  P )  .\/  ( X `  P )
)  e.  B  /\  W  e.  B )  /\  ( X `  P
)  .<_  ( ( F `
 P )  .\/  ( X `  P ) ) )  ->  (
( X `  P
)  .\/  ( (
( F `  P
)  .\/  ( X `  P ) )  ./\  W ) )  =  ( ( ( F `  P )  .\/  ( X `  P )
)  ./\  ( ( X `  P )  .\/  W ) ) )
331, 13, 25, 28, 30, 32syl131anc 1197 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  .\/  ( ( ( F `
 P )  .\/  ( X `  P ) )  ./\  W )
)  =  ( ( ( F `  P
)  .\/  ( X `  P ) )  ./\  ( ( X `  P )  .\/  W
) ) )
347, 8ltrncnv 30880 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
352, 3, 34syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' F  e.  T )
367, 8ltrnco 31453 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  `' F  e.  T
)  ->  ( X  o.  `' F )  e.  T
)
372, 11, 35, 36syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  `' F )  e.  T
)
385, 6, 7, 8ltrnel 30873 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
393, 38syld3an2 1231 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
40 cdlemk.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
415, 14, 31, 6, 7, 8, 40trlval2 30897 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  o.  `' F )  e.  T  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  ->  ( R `  ( X  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( X  o.  `' F ) `  ( F `  P )
) )  ./\  W
) )
422, 37, 39, 41syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( X  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( X  o.  `' F ) `  ( F `  P )
) )  ./\  W
) )
4319, 7, 8ltrn1o 30858 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
442, 3, 43syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F : B
-1-1-onto-> B )
45 f1ococnv1 5696 . . . . . . . . . . . . . 14  |-  ( F : B -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
4644, 45syl 16 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
4746coeq2d 5027 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  ( `' F  o.  F ) )  =  ( X  o.  (  _I  |`  B ) ) )
4819, 7, 8ltrn1o 30858 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T
)  ->  X : B
-1-1-onto-> B )
492, 11, 48syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X : B
-1-1-onto-> B )
50 f1of 5666 . . . . . . . . . . . . 13  |-  ( X : B -1-1-onto-> B  ->  X : B
--> B )
51 fcoi1 5609 . . . . . . . . . . . . 13  |-  ( X : B --> B  -> 
( X  o.  (  _I  |`  B ) )  =  X )
5249, 50, 513syl 19 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  (  _I  |`  B ) )  =  X )
5347, 52eqtr2d 2468 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  =  ( X  o.  ( `' F  o.  F
) ) )
54 coass 5380 . . . . . . . . . . 11  |-  ( ( X  o.  `' F
)  o.  F )  =  ( X  o.  ( `' F  o.  F
) )
5553, 54syl6eqr 2485 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  =  ( ( X  o.  `' F )  o.  F
) )
5655fveq1d 5722 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  =  ( ( ( X  o.  `' F )  o.  F
) `  P )
)
575, 6, 7, 8ltrncoval 30879 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X  o.  `' F )  e.  T  /\  F  e.  T )  /\  P  e.  A )  ->  (
( ( X  o.  `' F )  o.  F
) `  P )  =  ( ( X  o.  `' F ) `
 ( F `  P ) ) )
582, 37, 3, 4, 57syl121anc 1189 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( X  o.  `' F )  o.  F
) `  P )  =  ( ( X  o.  `' F ) `
 ( F `  P ) ) )
5956, 58eqtrd 2467 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  =  ( ( X  o.  `' F ) `  ( F `  P )
) )
6059oveq2d 6089 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  =  ( ( F `  P
)  .\/  ( ( X  o.  `' F
) `  ( F `  P ) ) ) )
6160eqcomd 2440 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( X  o.  `' F ) `  ( F `  P )
) )  =  ( ( F `  P
)  .\/  ( X `  P ) ) )
6261oveq1d 6088 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( ( X  o.  `' F
) `  ( F `  P ) ) ) 
./\  W )  =  ( ( ( F `
 P )  .\/  ( X `  P ) )  ./\  W )
)
6342, 62eqtrd 2467 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( X  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( X `  P ) )  ./\  W )
)
6463oveq2d 6089 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F
) ) )  =  ( ( X `  P )  .\/  (
( ( F `  P )  .\/  ( X `  P )
)  ./\  W )
) )
655, 6, 7, 8ltrnel 30873 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  e.  A  /\  -.  ( X `  P )  .<_  W ) )
6611, 65syld3an2 1231 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  e.  A  /\  -.  ( X `  P )  .<_  W ) )
67 eqid 2435 . . . . . . 7  |-  ( 1.
`  K )  =  ( 1. `  K
)
685, 14, 67, 6, 7lhpjat2 30755 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X `
 P )  e.  A  /\  -.  ( X `  P )  .<_  W ) )  -> 
( ( X `  P )  .\/  W
)  =  ( 1.
`  K ) )
692, 66, 68syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X `  P )  .\/  W )  =  ( 1. `  K ) )
7069oveq2d 6089 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( X `  P ) )  ./\  ( ( X `  P )  .\/  W
) )  =  ( ( ( F `  P )  .\/  ( X `  P )
)  ./\  ( 1. `  K ) ) )
71 hlol 30096 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OL )
721, 71syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
7319, 31, 67olm11 29962 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( F `  P )  .\/  ( X `  P )
)  e.  B )  ->  ( ( ( F `  P ) 
.\/  ( X `  P ) )  ./\  ( 1. `  K ) )  =  ( ( F `  P ) 
.\/  ( X `  P ) ) )
7472, 25, 73syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( X `  P ) )  ./\  ( 1. `  K ) )  =  ( ( F `  P ) 
.\/  ( X `  P ) ) )
7570, 74eqtr2d 2468 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  =  ( ( ( F `  P )  .\/  ( X `  P )
)  ./\  ( ( X `  P )  .\/  W ) ) )
7633, 64, 753eqtr4rd 2478 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( X `  P
) )  =  ( ( X `  P
)  .\/  ( R `  ( X  o.  `' F ) ) ) )
7716, 76breqtrd 4228 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( X `  P ) 
.\/  ( R `  ( X  o.  `' F ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204    _I cid 4485   `'ccnv 4869    |` cres 4872    o. ccom 4874   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   1.cp1 14459   Latclat 14466   OLcol 29909   Atomscatm 29998   HLchlt 30085   LHypclh 30718   LTrncltrn 30835   trLctrl 30892
This theorem is referenced by:  cdlemk5a  31569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893
  Copyright terms: Public domain W3C validator