Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk49 Unicode version

Theorem cdlemk49 30399
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk49  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z
Allowed substitution hints:    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk49
StepHypRef Expression
1 simp11 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )
3 simp13 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )
4 simp21 993 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  N  e.  T )
5 simp22 994 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
6 simp23 995 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( R `  F )  =  ( R `  N ) )
7 cdlemk5.b . . . . . 6  |-  B  =  ( Base `  K
)
8 cdlemk5.l . . . . . 6  |-  .<_  =  ( le `  K )
9 cdlemk5.j . . . . . 6  |-  .\/  =  ( join `  K )
10 cdlemk5.m . . . . . 6  |-  ./\  =  ( meet `  K )
11 cdlemk5.a . . . . . 6  |-  A  =  ( Atoms `  K )
12 cdlemk5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
13 cdlemk5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemk5.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
15 cdlemk5.z . . . . . 6  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
16 cdlemk5.y . . . . . 6  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
17 cdlemk5.x . . . . . 6  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
187, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk35s 30385 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ G  /  g ]_ X  e.  T )
191, 2, 3, 4, 5, 6, 18syl132anc 1205 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  [_ G  /  g ]_ X  e.  T )
20 simp3 962 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )
217, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk35s 30385 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ I  /  g ]_ X  e.  T )
221, 2, 20, 4, 5, 6, 21syl132anc 1205 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  [_ I  /  g ]_ X  e.  T )
2312, 13ltrncom 30186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ G  / 
g ]_ X  e.  T  /\  [_ I  /  g ]_ X  e.  T
)  ->  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  =  (
[_ I  /  g ]_ X  o.  [_ G  /  g ]_ X
) )
241, 19, 22, 23syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  =  ( [_ I  /  g ]_ X  o.  [_ G  /  g ]_ X ) )
2524fveq1d 5461 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( ( [_ I  /  g ]_ X  o.  [_ G  /  g ]_ X ) `  P
) )
26 simp2 961 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
277, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17cdlemk48 30398 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  ->  (
( [_ I  /  g ]_ X  o.  [_ G  /  g ]_ X
) `  P )  .<_  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) )
281, 2, 20, 26, 3, 27syl311anc 1201 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( [_ I  /  g ]_ X  o.  [_ G  /  g ]_ X
) `  P )  .<_  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) )
2925, 28eqbrtrd 4018 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   [_csb 3056   class class class wbr 3998    _I cid 4277   `'ccnv 4661    |` cres 4664    o. ccom 4666   ` cfv 5195  (class class class)co 5793   iota_crio 6264   Basecbs 13112   lecple 13179   joincjn 14042   meetcmee 14043   Atomscatm 28712   HLchlt 28799   LHypclh 29432   LTrncltrn 29549   trLctrl 29606
This theorem is referenced by:  cdlemk50  30400
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4106  ax-sep 4116  ax-nul 4124  ax-pow 4161  ax-pr 4187  ax-un 4485
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3541  df-pw 3602  df-sn 3621  df-pr 3622  df-op 3624  df-uni 3803  df-iun 3882  df-iin 3883  df-br 3999  df-opab 4053  df-mpt 4054  df-id 4282  df-xp 4668  df-rel 4669  df-cnv 4670  df-co 4671  df-dm 4672  df-rn 4673  df-res 4674  df-ima 4675  df-fun 5197  df-fn 5198  df-f 5199  df-f1 5200  df-fo 5201  df-f1o 5202  df-fv 5203  df-ov 5796  df-oprab 5797  df-mpt2 5798  df-1st 6057  df-2nd 6058  df-iota 6226  df-undef 6265  df-riota 6273  df-map 6743  df-poset 14044  df-plt 14056  df-lub 14072  df-glb 14073  df-join 14074  df-meet 14075  df-p0 14109  df-p1 14110  df-lat 14116  df-clat 14178  df-oposet 28625  df-ol 28627  df-oml 28628  df-covers 28715  df-ats 28716  df-atl 28747  df-cvlat 28771  df-hlat 28800  df-llines 28946  df-lplanes 28947  df-lvols 28948  df-lines 28949  df-psubsp 28951  df-pmap 28952  df-padd 29244  df-lhyp 29436  df-laut 29437  df-ldil 29552  df-ltrn 29553  df-trl 29607
  Copyright terms: Public domain W3C validator