Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk5 Structured version   Unicode version

Theorem cdlemk5 31807
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 25-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( N `  P )
)  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) )

Proof of Theorem cdlemk5
StepHypRef Expression
1 simp11l 1069 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  K  e.  HL )
2 simp11r 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  W  e.  H )
3 simp12 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  F  e.  T )
4 simp21l 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  N  e.  T )
5 simp23 993 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  ( R `  F )  =  ( R `  N ) )
6 simp22 992 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
7 cdlemk.b . . . . 5  |-  B  =  ( Base `  K
)
8 cdlemk.l . . . . 5  |-  .<_  =  ( le `  K )
9 cdlemk.j . . . . 5  |-  .\/  =  ( join `  K )
10 cdlemk.a . . . . 5  |-  A  =  ( Atoms `  K )
11 cdlemk.h . . . . 5  |-  H  =  ( LHyp `  K
)
12 cdlemk.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
13 cdlemk.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
147, 8, 9, 10, 11, 12, 13cdlemk1 31802 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  N  e.  T )  /\  (
( R `  F
)  =  ( R `
 N )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( P  .\/  ( N `  P ) )  =  ( ( F `  P )  .\/  ( R `  F )
) )
151, 2, 3, 4, 5, 6, 14syl222anc 1201 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  ( P  .\/  ( N `  P ) )  =  ( ( F `  P )  .\/  ( R `  F )
) )
16 simp13 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  G  e.  T )
177, 8, 9, 10, 11, 12, 13cdlemk2 31803 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )
181, 2, 3, 16, 6, 17syl221anc 1196 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  (
( G `  P
)  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( F `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )
1915, 18oveq12d 6135 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( N `  P )
)  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )  =  ( ( ( F `  P ) 
.\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
20 simp21r 1076 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  X  e.  T )
21 simp33 996 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  ( R `  G )  =/=  ( R `  F
) )
22 simp31 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  F  =/=  (  _I  |`  B ) )
23 simp32 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  G  =/=  (  _I  |`  B ) )
2422, 23jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) ) )
25 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
267, 8, 9, 10, 11, 12, 13, 25cdlemk5a 31806 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  .<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F
) ) ) )
271, 2, 3, 16, 20, 21, 24, 6, 26syl233anc 1214 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  (
( ( F `  P )  .\/  ( R `  F )
)  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) )
2819, 27eqbrtrd 4263 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( N `  P )
)  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1654    e. wcel 1728    =/= wne 2606   class class class wbr 4243    _I cid 4528   `'ccnv 4912    |` cres 4915    o. ccom 4917   ` cfv 5489  (class class class)co 6117   Basecbs 13507   lecple 13574   joincjn 14439   meetcmee 14440   Atomscatm 30235   HLchlt 30322   LHypclh 30955   LTrncltrn 31072   trLctrl 31129
This theorem is referenced by:  cdlemk6  31808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-rep 4351  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-iun 4124  df-iin 4125  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-1st 6385  df-2nd 6386  df-undef 6579  df-riota 6585  df-map 7056  df-poset 14441  df-plt 14453  df-lub 14469  df-glb 14470  df-join 14471  df-meet 14472  df-p0 14506  df-p1 14507  df-lat 14513  df-clat 14575  df-oposet 30148  df-ol 30150  df-oml 30151  df-covers 30238  df-ats 30239  df-atl 30270  df-cvlat 30294  df-hlat 30323  df-llines 30469  df-lplanes 30470  df-lvols 30471  df-lines 30472  df-psubsp 30474  df-pmap 30475  df-padd 30767  df-lhyp 30959  df-laut 30960  df-ldil 31075  df-ltrn 31076  df-trl 31130
  Copyright terms: Public domain W3C validator