Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk52 Unicode version

Theorem cdlemk52 31590
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 6, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk52  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z
Allowed substitution hints:    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk52
StepHypRef Expression
1 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
3 simp11l 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  K  e.  HL )
4 hllat 30000 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
53, 4syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  K  e.  Lat )
6 simp11 987 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12 988 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )
8 simp13 989 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )
9 simp21 990 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  N  e.  T )
10 simp22 991 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
11 simp23 992 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  F )  =  ( R `  N ) )
12 cdlemk5.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
13 cdlemk5.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
14 cdlemk5.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
15 cdlemk5.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
16 cdlemk5.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
17 cdlemk5.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
18 cdlemk5.z . . . . . . . . 9  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
19 cdlemk5.y . . . . . . . . 9  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
20 cdlemk5.x . . . . . . . . 9  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
211, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s 31573 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ G  /  g ]_ X  e.  T )
226, 7, 8, 9, 10, 11, 21syl132anc 1202 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  [_ G  /  g ]_ X  e.  T )
23 simp31 993 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  I  e.  T )
24 simp32 994 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  I  =/=  (  _I  |`  B ) )
2523, 24jca 519 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )
261, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s 31573 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ I  /  g ]_ X  e.  T )
276, 7, 25, 9, 10, 11, 26syl132anc 1202 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  [_ I  /  g ]_ X  e.  T )
2815, 16ltrnco 31355 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ G  / 
g ]_ X  e.  T  /\  [_ I  /  g ]_ X  e.  T
)  ->  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  e.  T
)
296, 22, 27, 28syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  e.  T )
30 simp22l 1076 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  P  e.  A )
312, 14, 15, 16ltrnat 30776 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  e.  T  /\  P  e.  A
)  ->  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A )
326, 29, 30, 31syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A )
331, 14atbase 29926 . . . . 5  |-  ( ( ( [_ G  / 
g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A  ->  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  B )
3432, 33syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  B )
352, 14, 15, 16ltrnat 30776 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ G  / 
g ]_ X  e.  T  /\  P  e.  A
)  ->  ( [_ G  /  g ]_ X `  P )  e.  A
)
366, 22, 30, 35syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ G  /  g ]_ X `  P )  e.  A )
371, 14atbase 29926 . . . . . . 7  |-  ( (
[_ G  /  g ]_ X `  P )  e.  A  ->  ( [_ G  /  g ]_ X `  P )  e.  B )
3836, 37syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ G  /  g ]_ X `  P )  e.  B )
391, 15, 16, 17trlcl 30800 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ I  / 
g ]_ X  e.  T
)  ->  ( R `  [_ I  /  g ]_ X )  e.  B
)
406, 27, 39syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  [_ I  / 
g ]_ X )  e.  B )
411, 12latjcl 14467 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( [_ G  /  g ]_ X `  P )  e.  B  /\  ( R `  [_ I  / 
g ]_ X )  e.  B )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  [_ I  /  g ]_ X ) )  e.  B )
425, 38, 40, 41syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  [_ I  /  g ]_ X ) )  e.  B )
432, 14, 15, 16ltrnat 30776 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ I  / 
g ]_ X  e.  T  /\  P  e.  A
)  ->  ( [_ I  /  g ]_ X `  P )  e.  A
)
446, 27, 30, 43syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ I  /  g ]_ X `  P )  e.  A )
451, 14atbase 29926 . . . . . . 7  |-  ( (
[_ I  /  g ]_ X `  P )  e.  A  ->  ( [_ I  /  g ]_ X `  P )  e.  B )
4644, 45syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ I  /  g ]_ X `  P )  e.  B )
471, 15, 16, 17trlcl 30800 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ G  / 
g ]_ X  e.  T
)  ->  ( R `  [_ G  /  g ]_ X )  e.  B
)
486, 22, 47syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  [_ G  / 
g ]_ X )  e.  B )
491, 12latjcl 14467 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( [_ I  /  g ]_ X `  P )  e.  B  /\  ( R `  [_ G  / 
g ]_ X )  e.  B )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  [_ G  /  g ]_ X ) )  e.  B )
505, 46, 48, 49syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  [_ G  /  g ]_ X ) )  e.  B )
511, 13latmcl 14468 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) )  e.  B  /\  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  [_ G  /  g ]_ X ) )  e.  B )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  e.  B )
525, 42, 50, 51syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  e.  B )
53 simp11r 1069 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  W  e.  H )
541, 14, 15, 16, 17trlnidat 30809 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  I  e.  T  /\  I  =/=  (  _I  |`  B ) )  ->  ( R `  I )  e.  A
)
553, 53, 23, 24, 54syl211anc 1190 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  I )  e.  A )
561, 12, 14hlatjcl 30003 . . . . . 6  |-  ( ( K  e.  HL  /\  ( [_ G  /  g ]_ X `  P )  e.  A  /\  ( R `  I )  e.  A )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  e.  B )
573, 36, 55, 56syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  e.  B )
58 simp13l 1072 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  G  e.  T )
59 simp13r 1073 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  G  =/=  (  _I  |`  B ) )
601, 14, 15, 16, 17trlnidat 30809 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  G  =/=  (  _I  |`  B ) )  ->  ( R `  G )  e.  A
)
613, 53, 58, 59, 60syl211anc 1190 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  G )  e.  A )
621, 12, 14hlatjcl 30003 . . . . . 6  |-  ( ( K  e.  HL  /\  ( [_ I  /  g ]_ X `  P )  e.  A  /\  ( R `  G )  e.  A )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) )  e.  B )
633, 44, 61, 62syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) )  e.  B )
641, 13latmcl 14468 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I )
)  e.  B  /\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
)  e.  B )  ->  ( ( (
[_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) )  e.  B
)
655, 57, 63, 64syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I )
)  ./\  ( ( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) ) )  e.  B )
661, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk50 31588 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) ) )
6725, 66syld3an3 1229 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) ) )
681, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk51 31589 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B ) ) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  .<_  ( (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) ) )
6925, 68syld3an3 1229 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  [_ I  / 
g ]_ X ) ) 
./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  [_ G  / 
g ]_ X ) ) )  .<_  ( (
( [_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) ) )
701, 2, 5, 34, 52, 65, 67, 69lattrd 14475 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( ( ( [_ G  /  g ]_ X `  P )  .\/  ( R `  I )
)  ./\  ( ( [_ I  /  g ]_ X `  P ) 
.\/  ( R `  G ) ) ) )
711, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk47 31585 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  =  ( ( (
[_ G  /  g ]_ X `  P ) 
.\/  ( R `  I ) )  ./\  ( ( [_ I  /  g ]_ X `  P )  .\/  ( R `  G )
) ) )
7270, 71breqtrrd 4230 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  .<_  ( [_ ( G  o.  I )  / 
g ]_ X `  P
) )
73 hlatl 29997 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
743, 73syl 16 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  K  e.  AtLat )
7515, 16ltrnco 31355 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  I  e.  T
)  ->  ( G  o.  I )  e.  T
)
766, 58, 23, 75syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  o.  I )  e.  T )
7758, 23jca 519 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  e.  T  /\  I  e.  T )
)
78 simp33 995 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( R `  G )  =/=  ( R `  I
) )
791, 15, 16, 17trlconid 31361 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  I  e.  T )  /\  ( R `  G )  =/=  ( R `  I
) )  ->  ( G  o.  I )  =/=  (  _I  |`  B ) )
806, 77, 78, 79syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( G  o.  I )  =/=  (  _I  |`  B ) )
8176, 80jca 519 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( G  o.  I
)  e.  T  /\  ( G  o.  I
)  =/=  (  _I  |`  B ) ) )
821, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk35s 31573 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( ( G  o.  I )  e.  T  /\  ( G  o.  I )  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [_ ( G  o.  I )  /  g ]_ X  e.  T )
836, 7, 81, 9, 10, 11, 82syl132anc 1202 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  [_ ( G  o.  I )  /  g ]_ X  e.  T )
842, 14, 15, 16ltrnat 30776 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  [_ ( G  o.  I )  / 
g ]_ X  e.  T  /\  P  e.  A
)  ->  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  e.  A )
856, 83, 30, 84syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  e.  A )
862, 14atcmp 29948 . . 3  |-  ( ( K  e.  AtLat  /\  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  e.  A  /\  ( [_ ( G  o.  I
)  /  g ]_ X `  P )  e.  A )  ->  (
( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `  P
)  .<_  ( [_ ( G  o.  I )  /  g ]_ X `  P )  <->  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) ) )
8774, 32, 85, 86syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X ) `  P
)  .<_  ( [_ ( G  o.  I )  /  g ]_ X `  P )  <->  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) ) )
8872, 87mpbid 202 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( I  e.  T  /\  I  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  I )
) )  ->  (
( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
) `  P )  =  ( [_ ( G  o.  I )  /  g ]_ X `  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   [_csb 3243   class class class wbr 4204    _I cid 4485   `'ccnv 4868    |` cres 4871    o. ccom 4873   ` cfv 5445  (class class class)co 6072   iota_crio 6533   Basecbs 13457   lecple 13524   joincjn 14389   meetcmee 14390   Latclat 14462   Atomscatm 29900   AtLatcal 29901   HLchlt 29987   LHypclh 30620   LTrncltrn 30737   trLctrl 30794
This theorem is referenced by:  cdlemk53a  31591
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-map 7011  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-llines 30134  df-lplanes 30135  df-lvols 30136  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624  df-laut 30625  df-ldil 30740  df-ltrn 30741  df-trl 30795
  Copyright terms: Public domain W3C validator