Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk54 Unicode version

Theorem cdlemk54 30415
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk54  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z   
j, b, g, z
Allowed substitution hints:    A( j)    B( j)    P( j)    R( j)    T( j)    F( j)    G( j)    H( j)    I( j)    .\/ ( j)    K( j)    .<_ ( j)    ./\ ( j)    N( j)    W( j)    X( z, g, j, b)    Y( g, j, b)    Z( z, j, b)

Proof of Theorem cdlemk54
StepHypRef Expression
1 coass 5190 . . 3  |-  ( ( G  o.  I )  o.  j )  =  ( G  o.  (
I  o.  j ) )
2 csbeq1 3086 . . 3  |-  ( ( ( G  o.  I
)  o.  j )  =  ( G  o.  ( I  o.  j
) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X )
31, 2ax-mp 10 . 2  |-  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X
4 simp1 957 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
5 simp21 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
) )
6 simp1l 981 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp22 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  G  e.  T )
8 simp31l 1080 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  I  e.  T )
9 cdlemk5.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 cdlemk5.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
119, 10ltrnco 30176 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  I  e.  T
)  ->  ( G  o.  I )  e.  T
)
126, 7, 8, 11syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( G  o.  I )  e.  T )
13 simp23 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 simp32 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  e.  T )
15 simp333 1112 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  ( G  o.  I )
) )
1615necomd 2531 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) )
17 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
18 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
19 cdlemk5.j . . . 4  |-  .\/  =  ( join `  K )
20 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
21 cdlemk5.a . . . 4  |-  A  =  ( Atoms `  K )
22 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
23 cdlemk5.z . . . 4  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
24 cdlemk5.y . . . 4  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
25 cdlemk5.x . . . 4  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
2617, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 30414 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  o.  I )  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) ) )  ->  [_ ( ( G  o.  I )  o.  j
)  /  g ]_ X  =  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X ) )
274, 5, 12, 13, 14, 16, 26syl132anc 1202 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  ( [_ ( G  o.  I )  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
28 simp2 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
299, 10ltrnco 30176 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  I  e.  T  /\  j  e.  T
)  ->  ( I  o.  j )  e.  T
)
306, 8, 14, 29syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
I  o.  j )  e.  T )
31 simp31r 1081 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =  ( R `  I ) )
32 simp332 1111 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  G
) )
3332, 31neeqtrd 2470 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  I
) )
3433necomd 2531 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  j
) )
35 simp331 1110 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  =/=  (  _I  |`  B ) )
3617, 9, 10, 22trlcone 30185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I  e.  T  /\  j  e.  T )  /\  (
( R `  I
)  =/=  ( R `
 j )  /\  j  =/=  (  _I  |`  B ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
376, 8, 14, 34, 35, 36syl122anc 1193 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
3831, 37eqnetrd 2466 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =/=  ( R `  (
I  o.  j ) ) )
3917, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 30414 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  o.  j )  e.  T  /\  ( R `  G
)  =/=  ( R `
 ( I  o.  j ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
404, 28, 30, 38, 39syl112anc 1188 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
4117, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 30414 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  I  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  I
)  =/=  ( R `
 j ) ) )  ->  [_ ( I  o.  j )  / 
g ]_ X  =  (
[_ I  /  g ]_ X  o.  [_ j  /  g ]_ X
) )
424, 5, 8, 13, 14, 34, 41syl132anc 1202 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
I  o.  j )  /  g ]_ X  =  ( [_ I  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
4342coeq2d 4846 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) ) )
44 coass 5190 . . . 4  |-  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) )
4543, 44syl6eqr 2335 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
4640, 45eqtrd 2317 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  ( ( [_ G  / 
g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
473, 27, 463eqtr3a 2341 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2448   A.wral 2545   [_csb 3083   class class class wbr 4025    _I cid 4304   `'ccnv 4688    |` cres 4691    o. ccom 4693   ` cfv 5222  (class class class)co 5820   iota_crio 6291   Basecbs 13143   lecple 13210   joincjn 14073   meetcmee 14074   Atomscatm 28721   HLchlt 28808   LHypclh 29441   LTrncltrn 29558   trLctrl 29615
This theorem is referenced by:  cdlemk55a  30416
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-map 6770  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-llines 28955  df-lplanes 28956  df-lvols 28957  df-lines 28958  df-psubsp 28960  df-pmap 28961  df-padd 29253  df-lhyp 29445  df-laut 29446  df-ldil 29561  df-ltrn 29562  df-trl 29616
  Copyright terms: Public domain W3C validator