Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk54 Unicode version

Theorem cdlemk54 30277
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120.  G,  I stand for g, h.  X represents tau. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk54  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b    I, b, g, z   
j, b, g, z
Allowed substitution hints:    A( j)    B( j)    P( j)    R( j)    T( j)    F( j)    G( j)    H( j)    I( j)    .\/ ( j)    K( j)    .<_ ( j)    ./\ ( j)    N( j)    W( j)    X( z, g, j, b)    Y( g, j, b)    Z( z, j, b)

Proof of Theorem cdlemk54
StepHypRef Expression
1 coass 5143 . . 3  |-  ( ( G  o.  I )  o.  j )  =  ( G  o.  (
I  o.  j ) )
2 csbeq1 3026 . . 3  |-  ( ( ( G  o.  I
)  o.  j )  =  ( G  o.  ( I  o.  j
) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X )
31, 2ax-mp 10 . 2  |-  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  [_ ( G  o.  ( I  o.  j
) )  /  g ]_ X
4 simp1 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) ) )
5 simp21 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
) )
6 simp1l 984 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp22 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  G  e.  T )
8 simp31l 1083 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  I  e.  T )
9 cdlemk5.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 cdlemk5.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
119, 10ltrnco 30038 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  I  e.  T
)  ->  ( G  o.  I )  e.  T
)
126, 7, 8, 11syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( G  o.  I )  e.  T )
13 simp23 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 simp32 997 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  e.  T )
15 simp333 1115 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  ( G  o.  I )
) )
1615necomd 2502 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) )
17 cdlemk5.b . . . 4  |-  B  =  ( Base `  K
)
18 cdlemk5.l . . . 4  |-  .<_  =  ( le `  K )
19 cdlemk5.j . . . 4  |-  .\/  =  ( join `  K )
20 cdlemk5.m . . . 4  |-  ./\  =  ( meet `  K )
21 cdlemk5.a . . . 4  |-  A  =  ( Atoms `  K )
22 cdlemk5.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
23 cdlemk5.z . . . 4  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
24 cdlemk5.y . . . 4  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
25 cdlemk5.x . . . 4  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
2617, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 30276 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  ( G  o.  I )  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  ( G  o.  I ) )  =/=  ( R `  j
) ) )  ->  [_ ( ( G  o.  I )  o.  j
)  /  g ]_ X  =  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X ) )
274, 5, 12, 13, 14, 16, 26syl132anc 1205 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
( G  o.  I
)  o.  j )  /  g ]_ X  =  ( [_ ( G  o.  I )  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
28 simp2 961 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
299, 10ltrnco 30038 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  I  e.  T  /\  j  e.  T
)  ->  ( I  o.  j )  e.  T
)
306, 8, 14, 29syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  (
I  o.  j )  e.  T )
31 simp31r 1084 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =  ( R `  I ) )
32 simp332 1114 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  G
) )
3332, 31neeqtrd 2441 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  j )  =/=  ( R `  I
) )
3433necomd 2502 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  j
) )
35 simp331 1113 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  j  =/=  (  _I  |`  B ) )
3617, 9, 10, 22trlcone 30047 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I  e.  T  /\  j  e.  T )  /\  (
( R `  I
)  =/=  ( R `
 j )  /\  j  =/=  (  _I  |`  B ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
376, 8, 14, 34, 35, 36syl122anc 1196 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  I )  =/=  ( R `  (
I  o.  j ) ) )
3831, 37eqnetrd 2437 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( R `  G )  =/=  ( R `  (
I  o.  j ) ) )
3917, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 30276 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  o.  j )  e.  T  /\  ( R `  G
)  =/=  ( R `
 ( I  o.  j ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
404, 28, 30, 38, 39syl112anc 1191 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  (
[_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
) )
4117, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 30276 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  I  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( j  e.  T  /\  ( R `  I
)  =/=  ( R `
 j ) ) )  ->  [_ ( I  o.  j )  / 
g ]_ X  =  (
[_ I  /  g ]_ X  o.  [_ j  /  g ]_ X
) )
424, 5, 8, 13, 14, 34, 41syl132anc 1205 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ (
I  o.  j )  /  g ]_ X  =  ( [_ I  /  g ]_ X  o.  [_ j  /  g ]_ X ) )
4342coeq2d 4799 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) ) )
44 coass 5143 . . . 4  |-  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
)  =  ( [_ G  /  g ]_ X  o.  ( [_ I  / 
g ]_ X  o.  [_ j  /  g ]_ X
) )
4543, 44syl6eqr 2306 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ G  /  g ]_ X  o.  [_ (
I  o.  j )  /  g ]_ X
)  =  ( (
[_ G  /  g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
4640, 45eqtrd 2288 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  [_ ( G  o.  ( I  o.  j ) )  / 
g ]_ X  =  ( ( [_ G  / 
g ]_ X  o.  [_ I  /  g ]_ X
)  o.  [_ j  /  g ]_ X
) )
473, 27, 463eqtr3a 2312 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  N  e.  T
)  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( I  e.  T  /\  ( R `
 G )  =  ( R `  I
) )  /\  j  e.  T  /\  (
j  =/=  (  _I  |`  B )  /\  ( R `  j )  =/=  ( R `  G
)  /\  ( R `  j )  =/=  ( R `  ( G  o.  I ) ) ) ) )  ->  ( [_ ( G  o.  I
)  /  g ]_ X  o.  [_ j  / 
g ]_ X )  =  ( ( [_ G  /  g ]_ X  o.  [_ I  /  g ]_ X )  o.  [_ j  /  g ]_ X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   A.wral 2516   [_csb 3023   class class class wbr 3963    _I cid 4241   `'ccnv 4625    |` cres 4628    o. ccom 4630   ` cfv 4638  (class class class)co 5757   iota_crio 6228   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   Atomscatm 28583   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477
This theorem is referenced by:  cdlemk55a  30278
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478
  Copyright terms: Public domain W3C validator