Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk5a Unicode version

Theorem cdlemk5a 30291
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 3-Jul-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk5a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  .<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F
) ) ) )

Proof of Theorem cdlemk5a
StepHypRef Expression
1 simp1l 984 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  K  e.  HL )
2 simp1r 985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  W  e.  H )
3 simp21 993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  F  e.  T )
4 simp22 994 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  G  e.  T )
5 simp3 962 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( R `  G )  =/=  ( R `  F
)  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
6 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
7 cdlemk.l . . . 4  |-  .<_  =  ( le `  K )
8 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
9 cdlemk.a . . . 4  |-  A  =  ( Atoms `  K )
10 cdlemk.h . . . 4  |-  H  =  ( LHyp `  K
)
11 cdlemk.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
12 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
13 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
146, 7, 8, 9, 10, 11, 12, 13cdlemk3 30289 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( F `
 P ) )
151, 2, 3, 4, 5, 14syl221anc 1198 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( F `
 P ) )
16 simp23 995 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  X  e.  T )
17 simp33l 1087 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  P  e.  A )
18 simp33r 1088 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  -.  P  .<_  W )
196, 7, 8, 9, 10, 11, 12, 13cdlemk4 30290 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( X `  P ) 
.\/  ( R `  ( X  o.  `' F ) ) ) )
201, 2, 3, 16, 17, 18, 19syl222anc 1203 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( F `  P )  .<_  ( ( X `  P ) 
.\/  ( R `  ( X  o.  `' F ) ) ) )
2115, 20eqbrtrd 4044 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 F )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( (
( F `  P
)  .\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )  .<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' F
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1628    e. wcel 1688    =/= wne 2447   class class class wbr 4024    _I cid 4303   `'ccnv 4687    |` cres 4690    o. ccom 4692   ` cfv 5221  (class class class)co 5819   Basecbs 13142   lecple 13209   joincjn 14072   meetcmee 14073   Atomscatm 28720   HLchlt 28807   LHypclh 29440   LTrncltrn 29557   trLctrl 29614
This theorem is referenced by:  cdlemk5  30292  cdlemk5auN  30316  cdlemk5u  30317
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-map 6769  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-llines 28954  df-lplanes 28955  df-lvols 28956  df-lines 28957  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561  df-trl 29615
  Copyright terms: Public domain W3C validator