Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk6u Unicode version

Theorem cdlemk6u 30202
Description: Part of proof of Lemma K of [Crawley] p. 118. Apply dalaw 29226. (Contributed by NM, 4-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b  |-  B  =  ( Base `  K
)
cdlemk1.l  |-  .<_  =  ( le `  K )
cdlemk1.j  |-  .\/  =  ( join `  K )
cdlemk1.m  |-  ./\  =  ( meet `  K )
cdlemk1.a  |-  A  =  ( Atoms `  K )
cdlemk1.h  |-  H  =  ( LHyp `  K
)
cdlemk1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk1.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk1.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk1.o  |-  O  =  ( S `  D
)
Assertion
Ref Expression
cdlemk6u  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    D, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i
Allowed substitution hints:    A( f)    B( f, i)    S( f, i)    G( f, i)    H( f)    K( f)    .<_ ( f)    O( f, i)    X( f, i)

Proof of Theorem cdlemk6u
StepHypRef Expression
1 cdlemk1.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemk1.l . . 3  |-  .<_  =  ( le `  K )
3 cdlemk1.j . . 3  |-  .\/  =  ( join `  K )
4 cdlemk1.m . . 3  |-  ./\  =  ( meet `  K )
5 cdlemk1.a . . 3  |-  A  =  ( Atoms `  K )
6 cdlemk1.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemk1.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk1.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
9 cdlemk1.s . . 3  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
10 cdlemk1.o . . 3  |-  O  =  ( S `  D
)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdlemk5u 30201 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( ( P  .\/  ( O `  P ) )  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) 
.<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' D ) ) ) )
12 simp11l 1071 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  K  e.  HL )
13 simp22l 1079 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  P  e.  A )
14 simp11 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
15 simp212 1099 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  G  e.  T )
162, 5, 6, 7ltrnat 29480 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
1714, 15, 13, 16syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( G `  P
)  e.  A )
18 simp213 1100 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  X  e.  T )
192, 5, 6, 7ltrnat 29480 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  P  e.  A
)  ->  ( X `  P )  e.  A
)
2014, 18, 13, 19syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( X `  P
)  e.  A )
21 simp1 960 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T ) )
22 simp211 1098 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  N  e.  T )
23 simp22 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
24 simp23 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( R `  F
)  =  ( R `
 N ) )
25 simp3l1 1065 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  F  =/=  (  _I  |`  B ) )
26 simp3l2 1066 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  D  =/=  (  _I  |`  B ) )
27 simp3r1 1068 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( R `  D
)  =/=  ( R `
 F ) )
281, 2, 3, 4, 5, 6, 7, 8, 9, 10cdlemkoatnle 30191 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( ( O `
 P )  e.  A  /\  -.  ( O `  P )  .<_  W ) )
2928simpld 447 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( O `  P )  e.  A
)
3021, 22, 23, 24, 25, 26, 27, 29syl133anc 1210 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( O `  P
)  e.  A )
31 simp13 992 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  ->  D  e.  T )
32 simp3r2 1069 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( R `  G
)  =/=  ( R `
 D ) )
335, 6, 7, 8trlcocnvat 30064 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  D  e.  T )  /\  ( R `  G )  =/=  ( R `  D
) )  ->  ( R `  ( G  o.  `' D ) )  e.  A )
3414, 15, 31, 32, 33syl121anc 1192 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( R `  ( G  o.  `' D
) )  e.  A
)
35 simp3r3 1070 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( R `  X
)  =/=  ( R `
 D ) )
365, 6, 7, 8trlcocnvat 30064 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  T  /\  D  e.  T )  /\  ( R `  X )  =/=  ( R `  D
) )  ->  ( R `  ( X  o.  `' D ) )  e.  A )
3714, 18, 31, 35, 36syl121anc 1192 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( R `  ( X  o.  `' D
) )  e.  A
)
382, 3, 4, 5dalaw 29226 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( G `  P
)  e.  A  /\  ( X `  P )  e.  A )  /\  ( ( O `  P )  e.  A  /\  ( R `  ( G  o.  `' D
) )  e.  A  /\  ( R `  ( X  o.  `' D
) )  e.  A
) )  ->  (
( ( P  .\/  ( O `  P ) )  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) 
.<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' D ) ) )  ->  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D ) ) ) )  .<_  ( (
( ( G `  P )  .\/  ( X `  P )
)  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) ) )
3912, 13, 17, 20, 30, 34, 37, 38syl133anc 1210 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( ( ( P 
.\/  ( O `  P ) )  ./\  ( ( G `  P )  .\/  ( R `  ( G  o.  `' D ) ) ) )  .<_  ( ( X `  P )  .\/  ( R `  ( X  o.  `' D
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) ) )
4011, 39mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983    e. cmpt 4037    _I cid 4262   `'ccnv 4646    |` cres 4649    o. ccom 4651   ` cfv 4659  (class class class)co 5778   iota_crio 6249   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   Atomscatm 28604   HLchlt 28691   LHypclh 29324   LTrncltrn 29441   trLctrl 29498
This theorem is referenced by:  cdlemk7u  30210
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-map 6728  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-llines 28838  df-lplanes 28839  df-lvols 28840  df-lines 28841  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328  df-laut 29329  df-ldil 29444  df-ltrn 29445  df-trl 29499
  Copyright terms: Public domain W3C validator