Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk7 Structured version   Unicode version

Theorem cdlemk7 31583
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119. (Contributed by NM, 27-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk.v  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )
Assertion
Ref Expression
cdlemk7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  .<_  ( ( ( S `
 X ) `  P )  .\/  V
) )
Distinct variable groups:    ./\ , f    .\/ , f    f, F, i    f, G, i    f, N    P, f    R, f    T, f   
f, W    ./\ , i    .<_ , i    .\/ , i    A, i    i, F   
i, H    i, K    i, N    P, i    R, i    T, i    i, W    f, X, i
Allowed substitution hints:    A( f)    B( f, i)    S( f, i)    H( f)    K( f)    .<_ ( f)    V( f, i)

Proof of Theorem cdlemk7
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
) )
2 simp2 958 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
3 simp311 1104 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  F  =/=  (  _I  |`  B ) )
4 simp312 1105 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  G  =/=  (  _I  |`  B ) )
5 simp32 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  G )  =/=  ( R `  F
) )
6 simp33 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  X )  =/=  ( R `  F
) )
75, 6jca 519 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( R `  G
)  =/=  ( R `
 F )  /\  ( R `  X )  =/=  ( R `  F ) ) )
8 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
9 cdlemk.l . . . 4  |-  .<_  =  ( le `  K )
10 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
11 cdlemk.a . . . 4  |-  A  =  ( Atoms `  K )
12 cdlemk.h . . . 4  |-  H  =  ( LHyp `  K
)
13 cdlemk.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
15 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
168, 9, 10, 11, 12, 13, 14, 15cdlemk6 31572 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
171, 2, 3, 4, 7, 16syl113anc 1196 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( G `  P )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
18 simp21l 1074 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  N  e.  T )
19 simp22 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
20 simp23 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  F )  =  ( R `  N ) )
2118, 19, 203jca 1134 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
22 cdlemk.s . . . . 5  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
238, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 31582 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( ( S `
 G ) `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) )
241, 21, 3, 4, 5, 23syl113anc 1196 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
25 simp11 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
26 simp13 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  G  e.  T )
279, 10, 11, 12, 13, 14trljat1 30901 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  G
) )  =  ( P  .\/  ( G `
 P ) ) )
2825, 26, 19, 27syl3anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  .\/  ( R `  G ) )  =  ( P  .\/  ( G `  P )
) )
2928oveq1d 6089 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) )  =  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
3024, 29eqtrd 2468 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  =  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
31 simp11l 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  K  e.  HL )
32 hllat 30099 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
3331, 32syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  K  e.  Lat )
34 simp12 988 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  F  e.  T )
35 simp21r 1075 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  X  e.  T )
3625, 34, 353jca 1134 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  T
) )
37 simp313 1106 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  X  =/=  (  _I  |`  B ) )
388, 9, 10, 11, 12, 13, 14, 15, 22cdlemksat 31581 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  ( R `  X )  =/=  ( R `  F ) ) )  ->  ( ( S `
 X ) `  P )  e.  A
)
3936, 21, 3, 37, 6, 38syl113anc 1196 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  e.  A )
408, 11atbase 30025 . . . . 5  |-  ( ( ( S `  X
) `  P )  e.  A  ->  ( ( S `  X ) `
 P )  e.  B )
4139, 40syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  e.  B )
42 simp11r 1069 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  W  e.  H )
43 simp22l 1076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  P  e.  A )
44 cdlemk.v . . . . . 6  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )
458, 9, 10, 11, 12, 13, 14, 15, 44cdlemkvcl 31577 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  P  e.  A )  ->  V  e.  B )
4631, 42, 34, 26, 35, 43, 45syl231anc 1204 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  V  e.  B )
478, 10latjcom 14481 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( S `  X ) `  P
)  e.  B  /\  V  e.  B )  ->  ( ( ( S `
 X ) `  P )  .\/  V
)  =  ( V 
.\/  ( ( S `
 X ) `  P ) ) )
4833, 41, 46, 47syl3anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( ( S `  X ) `  P
)  .\/  V )  =  ( V  .\/  ( ( S `  X ) `  P
) ) )
4944a1i 11 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  V  =  ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) ) )
508, 9, 10, 11, 12, 13, 14, 15, 22cdlemksv2 31582 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  X  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  ( R `  X )  =/=  ( R `  F ) ) )  ->  ( ( S `
 X ) `  P )  =  ( ( P  .\/  ( R `  X )
)  ./\  ( ( N `  P )  .\/  ( R `  ( X  o.  `' F
) ) ) ) )
5136, 21, 3, 37, 6, 50syl113anc 1196 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  =  ( ( P 
.\/  ( R `  X ) )  ./\  ( ( N `  P )  .\/  ( R `  ( X  o.  `' F ) ) ) ) )
529, 10, 11, 12, 13, 14trljat1 30901 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  X
) )  =  ( P  .\/  ( X `
 P ) ) )
5325, 35, 19, 52syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  .\/  ( R `  X ) )  =  ( P  .\/  ( X `  P )
) )
549, 11, 12, 13ltrnat 30875 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  P  e.  A
)  ->  ( X `  P )  e.  A
)
5525, 35, 43, 54syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( X `  P )  e.  A )
5610, 11hlatjcom 30103 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X `  P )  e.  A  /\  P  e.  A )  ->  (
( X `  P
)  .\/  P )  =  ( P  .\/  ( X `  P ) ) )
5731, 55, 43, 56syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( X `  P
)  .\/  P )  =  ( P  .\/  ( X `  P ) ) )
5853, 57eqtr4d 2471 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( P  .\/  ( R `  X ) )  =  ( ( X `  P )  .\/  P
) )
599, 11, 12, 13ltrnat 30875 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  N  e.  T  /\  P  e.  A
)  ->  ( N `  P )  e.  A
)
6025, 18, 43, 59syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( N `  P )  e.  A )
6135, 34jca 519 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( X  e.  T  /\  F  e.  T )
)
6211, 12, 13, 14trlcocnvat 31459 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  T  /\  F  e.  T )  /\  ( R `  X )  =/=  ( R `  F
) )  ->  ( R `  ( X  o.  `' F ) )  e.  A )
6325, 61, 6, 62syl3anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( R `  ( X  o.  `' F ) )  e.  A )
6410, 11hlatjcom 30103 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( N `  P )  e.  A  /\  ( R `  ( X  o.  `' F ) )  e.  A )  ->  (
( N `  P
)  .\/  ( R `  ( X  o.  `' F ) ) )  =  ( ( R `
 ( X  o.  `' F ) )  .\/  ( N `  P ) ) )
6531, 60, 63, 64syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( N `  P
)  .\/  ( R `  ( X  o.  `' F ) ) )  =  ( ( R `
 ( X  o.  `' F ) )  .\/  ( N `  P ) ) )
6658, 65oveq12d 6092 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( P  .\/  ( R `  X )
)  ./\  ( ( N `  P )  .\/  ( R `  ( X  o.  `' F
) ) ) )  =  ( ( ( X `  P ) 
.\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) )
6751, 66eqtrd 2468 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  X
) `  P )  =  ( ( ( X `  P ) 
.\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) )
6849, 67oveq12d 6092 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  ( V  .\/  ( ( S `
 X ) `  P ) )  =  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
6948, 68eqtrd 2468 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( ( S `  X ) `  P
)  .\/  V )  =  ( ( ( ( G `  P
)  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' F ) )  .\/  ( R `  ( X  o.  `' F ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' F ) )  .\/  ( N `  P ) ) ) ) )
7017, 30, 693brtr4d 4235 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B ) )  /\  ( R `
 G )  =/=  ( R `  F
)  /\  ( R `  X )  =/=  ( R `  F )
) )  ->  (
( S `  G
) `  P )  .<_  ( ( ( S `
 X ) `  P )  .\/  V
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4205    e. cmpt 4259    _I cid 4486   `'ccnv 4870    |` cres 4873    o. ccom 4875   ` cfv 5447  (class class class)co 6074   iota_crio 6535   Basecbs 13462   lecple 13529   joincjn 14394   meetcmee 14395   Latclat 14467   Atomscatm 29999   HLchlt 30086   LHypclh 30719   LTrncltrn 30836   trLctrl 30893
This theorem is referenced by:  cdlemk11  31584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-undef 6536  df-riota 6542  df-map 7013  df-poset 14396  df-plt 14408  df-lub 14424  df-glb 14425  df-join 14426  df-meet 14427  df-p0 14461  df-p1 14462  df-lat 14468  df-clat 14530  df-oposet 29912  df-ol 29914  df-oml 29915  df-covers 30002  df-ats 30003  df-atl 30034  df-cvlat 30058  df-hlat 30087  df-llines 30233  df-lplanes 30234  df-lvols 30235  df-lines 30236  df-psubsp 30238  df-pmap 30239  df-padd 30531  df-lhyp 30723  df-laut 30724  df-ldil 30839  df-ltrn 30840  df-trl 30894
  Copyright terms: Public domain W3C validator