Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk7u Unicode version

Theorem cdlemk7u 30210
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 5, p. 119 for the sigma1 case. (Contributed by NM, 3-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b  |-  B  =  ( Base `  K
)
cdlemk1.l  |-  .<_  =  ( le `  K )
cdlemk1.j  |-  .\/  =  ( join `  K )
cdlemk1.m  |-  ./\  =  ( meet `  K )
cdlemk1.a  |-  A  =  ( Atoms `  K )
cdlemk1.h  |-  H  =  ( LHyp `  K
)
cdlemk1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk1.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk1.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk1.o  |-  O  =  ( S `  D
)
cdlemk1.u  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
cdlemk1.v  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )
Assertion
Ref Expression
cdlemk7u  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  G
) `  P )  .<_  ( ( ( U `
 X ) `  P )  .\/  V
) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    D, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , e    .\/ , e    D, e, j    e, G, j   
e, O    P, e    R, e    T, e    e, W    ./\ , j    .<_ , j    .\/ , j    A, j    D, j    j, F   
j, H    j, K    j, N    j, O    P, j    R, j    T, j   
j, W    e, F    e, X, j
Allowed substitution hints:    A( e, f)    B( e, f, i, j)    S( e, f, i, j)    U( e, f, i, j)    G( f, i)    H( e, f)    K( e, f)    .<_ ( e, f)    N( e)    O( f, i)    V( e, f, i, j)    X( f, i)

Proof of Theorem cdlemk7u
StepHypRef Expression
1 simp31 996 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) ) )
2 simp33 998 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( R `  D
)  =/=  ( R `
 F )  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X )  =/=  ( R `  D
) ) )
31, 2jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )
4 cdlemk1.b . . . 4  |-  B  =  ( Base `  K
)
5 cdlemk1.l . . . 4  |-  .<_  =  ( le `  K )
6 cdlemk1.j . . . 4  |-  .\/  =  ( join `  K )
7 cdlemk1.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdlemk1.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemk1.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdlemk1.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemk1.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
12 cdlemk1.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
13 cdlemk1.o . . . 4  |-  O  =  ( S `  D
)
144, 5, 6, 7, 8, 9, 10, 11, 12, 13cdlemk6u 30202 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  X )  =/=  ( R `  D )
) ) )  -> 
( ( P  .\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) )
153, 14syld3an3 1232 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( P  .\/  ( G `  P )
)  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) 
.<_  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) )
16 simp11l 1071 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  K  e.  HL )
17 simp11r 1072 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  W  e.  H )
1816, 17jca 520 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simp23 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( R `  F )  =  ( R `  N ) )
20 simp212 1099 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  G  e.  T )
21 simp12 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  F  e.  T )
22 simp13 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  D  e.  T )
23 simp211 1098 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  N  e.  T )
2421, 22, 233jca 1137 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )
)
25 simp331 1113 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( R `  D )  =/=  ( R `  F
) )
26 simp332 1114 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( R `  G )  =/=  ( R `  D
) )
2726necomd 2502 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( R `  D )  =/=  ( R `  G
) )
2825, 27jca 520 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( R `  D
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  G ) ) )
29 simp311 1107 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  F  =/=  (  _I  |`  B ) )
30 simp313 1109 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  G  =/=  (  _I  |`  B ) )
31 simp312 1108 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  D  =/=  (  _I  |`  B ) )
3229, 30, 313jca 1137 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) ) )
33 simp22 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
34 cdlemk1.u . . . . 5  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
354, 5, 6, 7, 8, 9, 10, 11, 12, 13, 34cdlemkuv2 30207 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  D )  =/=  ( R `  G )
)  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( U `  G ) `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) )
3618, 19, 20, 24, 28, 32, 33, 35syl313anc 1211 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  G
) `  P )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D ) ) ) ) )
375, 6, 8, 9, 10, 11trljat1 29506 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  G
) )  =  ( P  .\/  ( G `
 P ) ) )
3818, 20, 33, 37syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( P  .\/  ( R `  G ) )  =  ( P  .\/  ( G `  P )
) )
3938oveq1d 5793 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( P  .\/  ( R `  G )
)  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) )  =  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D ) ) ) ) )
4036, 39eqtrd 2288 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  G
) `  P )  =  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D ) ) ) ) )
41 hllat 28704 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
4216, 41syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  K  e.  Lat )
43 simp213 1100 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  X  e.  T )
44 simp333 1115 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( R `  X )  =/=  ( R `  D
) )
4544necomd 2502 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( R `  D )  =/=  ( R `  X
) )
4625, 45jca 520 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( R `  D
)  =/=  ( R `
 F )  /\  ( R `  D )  =/=  ( R `  X ) ) )
47 simp32 997 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  X  =/=  (  _I  |`  B ) )
4829, 47, 313jca 1137 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) ) )
494, 5, 6, 7, 8, 9, 10, 11, 12, 13, 34cdlemkuat 30206 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  X  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  D )  =/=  ( R `  X )
)  /\  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( U `  X ) `  P )  e.  A
)
5018, 19, 43, 24, 46, 48, 33, 49syl313anc 1211 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  X
) `  P )  e.  A )
514, 8atbase 28630 . . . . 5  |-  ( ( ( U `  X
) `  P )  e.  A  ->  ( ( U `  X ) `
 P )  e.  B )
5250, 51syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  X
) `  P )  e.  B )
53 simp22l 1079 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  P  e.  A )
54 cdlemk1.v . . . . . 6  |-  V  =  ( ( ( G `
 P )  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )
554, 5, 6, 8, 9, 10, 11, 7, 54cdlemkvcl 30182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( D  e.  T  /\  G  e.  T  /\  X  e.  T )  /\  P  e.  A )  ->  V  e.  B )
5616, 17, 22, 20, 43, 53, 55syl231anc 1207 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  V  e.  B )
574, 6latjcom 14113 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( U `  X ) `  P
)  e.  B  /\  V  e.  B )  ->  ( ( ( U `
 X ) `  P )  .\/  V
)  =  ( V 
.\/  ( ( U `
 X ) `  P ) ) )
5842, 52, 56, 57syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( ( U `  X ) `  P
)  .\/  V )  =  ( V  .\/  ( ( U `  X ) `  P
) ) )
5954a1i 12 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  V  =  ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) ) )
604, 5, 6, 7, 8, 9, 10, 11, 12, 13, 34cdlemkuv2 30207 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  X  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  D )  =/=  ( R `  X )
)  /\  ( F  =/=  (  _I  |`  B )  /\  X  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( U `  X ) `  P )  =  ( ( P  .\/  ( R `  X )
)  ./\  ( ( O `  P )  .\/  ( R `  ( X  o.  `' D
) ) ) ) )
6118, 19, 43, 24, 46, 48, 33, 60syl313anc 1211 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  X
) `  P )  =  ( ( P 
.\/  ( R `  X ) )  ./\  ( ( O `  P )  .\/  ( R `  ( X  o.  `' D ) ) ) ) )
625, 6, 8, 9, 10, 11trljat1 29506 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  X
) )  =  ( P  .\/  ( X `
 P ) ) )
6318, 43, 33, 62syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( P  .\/  ( R `  X ) )  =  ( P  .\/  ( X `  P )
) )
645, 8, 9, 10ltrnat 29480 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  P  e.  A
)  ->  ( X `  P )  e.  A
)
6518, 43, 53, 64syl3anc 1187 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( X `  P )  e.  A )
666, 8hlatjcom 28708 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X `  P )  e.  A  /\  P  e.  A )  ->  (
( X `  P
)  .\/  P )  =  ( P  .\/  ( X `  P ) ) )
6716, 65, 53, 66syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( X `  P
)  .\/  P )  =  ( P  .\/  ( X `  P ) ) )
6863, 67eqtr4d 2291 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( P  .\/  ( R `  X ) )  =  ( ( X `  P )  .\/  P
) )
69 simp1 960 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T
) )
7023, 33, 193jca 1137 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )
7129, 31, 253jca 1137 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )
724, 5, 6, 7, 8, 9, 10, 11, 12, 13cdlemkoatnle 30191 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( ( O `
 P )  e.  A  /\  -.  ( O `  P )  .<_  W ) )
7372simpld 447 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  ( R `  D )  =/=  ( R `  F ) ) )  ->  ( O `  P )  e.  A
)
7469, 70, 71, 73syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( O `  P )  e.  A )
7543, 22jca 520 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( X  e.  T  /\  D  e.  T )
)
768, 9, 10, 11trlcocnvat 30064 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  T  /\  D  e.  T )  /\  ( R `  X )  =/=  ( R `  D
) )  ->  ( R `  ( X  o.  `' D ) )  e.  A )
7718, 75, 44, 76syl3anc 1187 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( R `  ( X  o.  `' D ) )  e.  A )
786, 8hlatjcom 28708 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( O `  P )  e.  A  /\  ( R `  ( X  o.  `' D ) )  e.  A )  ->  (
( O `  P
)  .\/  ( R `  ( X  o.  `' D ) ) )  =  ( ( R `
 ( X  o.  `' D ) )  .\/  ( O `  P ) ) )
7916, 74, 77, 78syl3anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( O `  P
)  .\/  ( R `  ( X  o.  `' D ) ) )  =  ( ( R `
 ( X  o.  `' D ) )  .\/  ( O `  P ) ) )
8068, 79oveq12d 5796 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( P  .\/  ( R `  X )
)  ./\  ( ( O `  P )  .\/  ( R `  ( X  o.  `' D
) ) ) )  =  ( ( ( X `  P ) 
.\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) )
8161, 80eqtrd 2288 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  X
) `  P )  =  ( ( ( X `  P ) 
.\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) )
8259, 81oveq12d 5796 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  ( V  .\/  ( ( U `
 X ) `  P ) )  =  ( ( ( ( G `  P ) 
.\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) )
8358, 82eqtrd 2288 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( ( U `  X ) `  P
)  .\/  V )  =  ( ( ( ( G `  P
)  .\/  ( X `  P ) )  ./\  ( ( R `  ( G  o.  `' D ) )  .\/  ( R `  ( X  o.  `' D ) ) ) )  .\/  ( ( ( X `
 P )  .\/  P )  ./\  ( ( R `  ( X  o.  `' D ) )  .\/  ( O `  P ) ) ) ) )
8415, 40, 833brtr4d 4013 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T  /\  X  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  X  =/=  (  _I  |`  B )  /\  ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  G )  =/=  ( R `  D )  /\  ( R `  X
)  =/=  ( R `
 D ) ) ) )  ->  (
( U `  G
) `  P )  .<_  ( ( ( U `
 X ) `  P )  .\/  V
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3983    e. cmpt 4037    _I cid 4262   `'ccnv 4646    |` cres 4649    o. ccom 4651   ` cfv 4659  (class class class)co 5778   iota_crio 6249   Basecbs 13096   lecple 13163   joincjn 14026   meetcmee 14027   Latclat 14099   Atomscatm 28604   HLchlt 28691   LHypclh 29324   LTrncltrn 29441   trLctrl 29498
This theorem is referenced by:  cdlemk11u  30211  cdlemk7u-2N  30228
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-iin 3868  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-map 6728  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-p1 14094  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-llines 28838  df-lplanes 28839  df-lvols 28840  df-lines 28841  df-psubsp 28843  df-pmap 28844  df-padd 29136  df-lhyp 29328  df-laut 29329  df-ldil 29444  df-ltrn 29445  df-trl 29499
  Copyright terms: Public domain W3C validator