Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk8 Unicode version

Theorem cdlemk8 31096
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( X `  P
) )  =  ( ( G `  P
)  .\/  ( R `  ( X  o.  `' G ) ) ) )

Proof of Theorem cdlemk8
StepHypRef Expression
1 coass 5273 . . . . . 6  |-  ( ( X  o.  `' G
)  o.  G )  =  ( X  o.  ( `' G  o.  G
) )
2 simp1 955 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2l 981 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
4 cdlemk.b . . . . . . . . . . 11  |-  B  =  ( Base `  K
)
5 cdlemk.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
6 cdlemk.t . . . . . . . . . . 11  |-  T  =  ( ( LTrn `  K
) `  W )
74, 5, 6ltrn1o 30382 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G : B
-1-1-onto-> B )
82, 3, 7syl2anc 642 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G : B
-1-1-onto-> B )
9 f1ococnv1 5585 . . . . . . . . 9  |-  ( G : B -1-1-onto-> B  ->  ( `' G  o.  G )  =  (  _I  |`  B ) )
108, 9syl 15 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' G  o.  G )  =  (  _I  |`  B ) )
1110coeq2d 4928 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  ( `' G  o.  G ) )  =  ( X  o.  (  _I  |`  B ) ) )
12 simp2r 982 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  e.  T )
134, 5, 6ltrn1o 30382 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T
)  ->  X : B
-1-1-onto-> B )
142, 12, 13syl2anc 642 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X : B
-1-1-onto-> B )
15 f1of 5555 . . . . . . . 8  |-  ( X : B -1-1-onto-> B  ->  X : B
--> B )
16 fcoi1 5498 . . . . . . . 8  |-  ( X : B --> B  -> 
( X  o.  (  _I  |`  B ) )  =  X )
1714, 15, 163syl 18 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  (  _I  |`  B ) )  =  X )
1811, 17eqtrd 2390 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  ( `' G  o.  G ) )  =  X )
191, 18syl5eq 2402 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( X  o.  `' G
)  o.  G )  =  X )
2019fveq1d 5610 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( X  o.  `' G )  o.  G
) `  P )  =  ( X `  P ) )
215, 6ltrncnv 30404 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  `' G  e.  T )
222, 3, 21syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' G  e.  T )
235, 6ltrnco 30977 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  `' G  e.  T
)  ->  ( X  o.  `' G )  e.  T
)
242, 12, 22, 23syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  `' G )  e.  T
)
25 simp3l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
26 cdlemk.l . . . . . 6  |-  .<_  =  ( le `  K )
27 cdlemk.a . . . . . 6  |-  A  =  ( Atoms `  K )
2826, 27, 5, 6ltrncoval 30403 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( X  o.  `' G )  e.  T  /\  G  e.  T )  /\  P  e.  A )  ->  (
( ( X  o.  `' G )  o.  G
) `  P )  =  ( ( X  o.  `' G ) `
 ( G `  P ) ) )
292, 24, 3, 25, 28syl121anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( X  o.  `' G )  o.  G
) `  P )  =  ( ( X  o.  `' G ) `
 ( G `  P ) ) )
3020, 29eqtr3d 2392 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X `  P )  =  ( ( X  o.  `' G ) `  ( G `  P )
) )
3130oveq2d 5961 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( X `  P
) )  =  ( ( G `  P
)  .\/  ( ( X  o.  `' G
) `  ( G `  P ) ) ) )
3226, 27, 5, 6ltrnel 30397 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
33323adant2r 1177 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
34 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
35 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
3626, 34, 27, 5, 6, 35trljat1 30424 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  o.  `' G )  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( X  o.  `' G
) ) )  =  ( ( G `  P )  .\/  (
( X  o.  `' G ) `  ( G `  P )
) ) )
372, 24, 33, 36syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( X  o.  `' G
) ) )  =  ( ( G `  P )  .\/  (
( X  o.  `' G ) `  ( G `  P )
) ) )
3831, 37eqtr4d 2393 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( X `  P
) )  =  ( ( G `  P
)  .\/  ( R `  ( X  o.  `' G ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   class class class wbr 4104    _I cid 4386   `'ccnv 4770    |` cres 4773    o. ccom 4775   -->wf 5333   -1-1-onto->wf1o 5336   ` cfv 5337  (class class class)co 5945   Basecbs 13245   lecple 13312   joincjn 14177   meetcmee 14178   Atomscatm 29522   HLchlt 29609   LHypclh 30242   LTrncltrn 30359   trLctrl 30416
This theorem is referenced by:  cdlemk9  31097  cdlemk9bN  31098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-map 6862  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-llines 29756  df-lplanes 29757  df-lvols 29758  df-lines 29759  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246  df-laut 30247  df-ldil 30362  df-ltrn 30363  df-trl 30417
  Copyright terms: Public domain W3C validator