Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk9 Unicode version

Theorem cdlemk9 29932
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 29-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
cdlemk9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G `  P
)  .\/  ( X `  P ) )  ./\  W )  =  ( R `
 ( X  o.  `' G ) ) )

Proof of Theorem cdlemk9
StepHypRef Expression
1 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemk.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
4 cdlemk.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdlemk.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdlemk.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
8 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
91, 2, 3, 4, 5, 6, 7, 8cdlemk8 29931 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( X `  P
) )  =  ( ( G `  P
)  .\/  ( R `  ( X  o.  `' G ) ) ) )
109oveq1d 5725 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G `  P
)  .\/  ( X `  P ) )  ./\  W )  =  ( ( ( G `  P
)  .\/  ( R `  ( X  o.  `' G ) ) ) 
./\  W ) )
11 simp1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
122, 4, 5, 6ltrnel 29232 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
13123adant2r 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
14 eqid 2253 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
152, 8, 14, 4, 5lhpmat 29123 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G `
 P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  -> 
( ( G `  P )  ./\  W
)  =  ( 0.
`  K ) )
1611, 13, 15syl2anc 645 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  ./\  W )  =  ( 0. `  K ) )
1716oveq1d 5725 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G `  P
)  ./\  W )  .\/  ( R `  ( X  o.  `' G
) ) )  =  ( ( 0. `  K )  .\/  ( R `  ( X  o.  `' G ) ) ) )
18 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
19 simp2l 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
20 simp3l 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
212, 4, 5, 6ltrnat 29233 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
2211, 19, 20, 21syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G `  P )  e.  A
)
23 simp2r 987 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  X  e.  T )
245, 6ltrncnv 29239 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  `' G  e.  T )
2511, 19, 24syl2anc 645 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' G  e.  T )
265, 6ltrnco 29812 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  T  /\  `' G  e.  T
)  ->  ( X  o.  `' G )  e.  T
)
2711, 23, 25, 26syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( X  o.  `' G )  e.  T
)
281, 5, 6, 7trlcl 29257 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  o.  `' G )  e.  T
)  ->  ( R `  ( X  o.  `' G ) )  e.  B )
2911, 27, 28syl2anc 645 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( X  o.  `' G ) )  e.  B )
30 simp1r 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
311, 5lhpbase 29091 . . . . 5  |-  ( W  e.  H  ->  W  e.  B )
3230, 31syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  B )
332, 5, 6, 7trlle 29277 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  o.  `' G )  e.  T
)  ->  ( R `  ( X  o.  `' G ) )  .<_  W )
3411, 27, 33syl2anc 645 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( X  o.  `' G ) )  .<_  W )
351, 2, 3, 8, 4atmod4i2 28960 . . . 4  |-  ( ( K  e.  HL  /\  ( ( G `  P )  e.  A  /\  ( R `  ( X  o.  `' G
) )  e.  B  /\  W  e.  B
)  /\  ( R `  ( X  o.  `' G ) )  .<_  W )  ->  (
( ( G `  P )  ./\  W
)  .\/  ( R `  ( X  o.  `' G ) ) )  =  ( ( ( G `  P ) 
.\/  ( R `  ( X  o.  `' G ) ) ) 
./\  W ) )
3618, 22, 29, 32, 34, 35syl131anc 1200 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G `  P
)  ./\  W )  .\/  ( R `  ( X  o.  `' G
) ) )  =  ( ( ( G `
 P )  .\/  ( R `  ( X  o.  `' G ) ) )  ./\  W
) )
37 hlol 28455 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
3818, 37syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
391, 3, 14olj02 28320 . . . 4  |-  ( ( K  e.  OL  /\  ( R `  ( X  o.  `' G ) )  e.  B )  ->  ( ( 0.
`  K )  .\/  ( R `  ( X  o.  `' G ) ) )  =  ( R `  ( X  o.  `' G ) ) )
4038, 29, 39syl2anc 645 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( 0. `  K )  .\/  ( R `  ( X  o.  `' G ) ) )  =  ( R `  ( X  o.  `' G ) ) )
4117, 36, 403eqtr3d 2293 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G `  P
)  .\/  ( R `  ( X  o.  `' G ) ) ) 
./\  W )  =  ( R `  ( X  o.  `' G
) ) )
4210, 41eqtrd 2285 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  X  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G `  P
)  .\/  ( X `  P ) )  ./\  W )  =  ( R `
 ( X  o.  `' G ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   `'ccnv 4579    o. ccom 4584   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   0.cp0 13987   OLcol 28268   Atomscatm 28357   HLchlt 28444   LHypclh 29077   LTrncltrn 29194   trLctrl 29251
This theorem is referenced by:  cdlemk10  29936
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-llines 28591  df-lplanes 28592  df-lvols 28593  df-lines 28594  df-psubsp 28596  df-pmap 28597  df-padd 28889  df-lhyp 29081  df-laut 29082  df-ldil 29197  df-ltrn 29198  df-trl 29252
  Copyright terms: Public domain W3C validator