Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemksel Unicode version

Theorem cdlemksel 30959
Description: Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma(p) function to be a translation. TODO: combine cdlemki 30955? (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk.m  |-  ./\  =  ( meet `  K )
cdlemk.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
Assertion
Ref Expression
cdlemksel  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( S `  G )  e.  T
)
Distinct variable groups:    ./\ , f    .\/ , f    f, F, i    f, G, i    f, N    P, f    R, f    T, f   
f, W    ./\ , i    .<_ , i    .\/ , i    A, i    i, F   
i, H    i, K    i, N    P, i    R, i    T, i    i, W
Allowed substitution hints:    A( f)    B( f, i)    S( f, i)    H( f)    K( f)    .<_ ( f)

Proof of Theorem cdlemksel
StepHypRef Expression
1 simp13 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  G  e.  T
)
2 cdlemk.b . . . 4  |-  B  =  ( Base `  K
)
3 cdlemk.l . . . 4  |-  .<_  =  ( le `  K )
4 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
5 cdlemk.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemk.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdlemk.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
9 cdlemk.m . . . 4  |-  ./\  =  ( meet `  K )
10 cdlemk.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
112, 3, 4, 5, 6, 7, 8, 9, 10cdlemksv 30958 . . 3  |-  ( G  e.  T  ->  ( S `  G )  =  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) ) )
121, 11syl 16 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( S `  G )  =  (
iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) ) ) )
13 eqid 2387 . . 3  |-  ( iota_ i  e.  T ( i `
 P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) )  =  ( iota_ i  e.  T ( i `
 P )  =  ( ( P  .\/  ( R `  G ) )  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) )
142, 3, 4, 5, 6, 7, 8, 9, 13cdlemki 30955 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( iota_ i  e.  T ( i `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( N `  P )  .\/  ( R `  ( G  o.  `' F
) ) ) ) )  e.  T )
1512, 14eqeltrd 2461 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( N  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  G )  =/=  ( R `  F ) ) )  ->  ( S `  G )  e.  T
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   class class class wbr 4153    e. cmpt 4207    _I cid 4434   `'ccnv 4817    |` cres 4820    o. ccom 4822   ` cfv 5394  (class class class)co 6020   iota_crio 6478   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   Atomscatm 29378   HLchlt 29465   LHypclh 30098   LTrncltrn 30215   trLctrl 30272
This theorem is referenced by:  cdlemksat  30960  cdlemksv2  30961  cdlemk12  30964  cdlemkoatnle  30965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-map 6956  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-llines 29612  df-lplanes 29613  df-lvols 29614  df-lines 29615  df-psubsp 29617  df-pmap 29618  df-padd 29910  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219  df-trl 30273
  Copyright terms: Public domain W3C validator