Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml2N Unicode version

Theorem cdleml2N 31505
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b  |-  B  =  ( Base `  K
)
cdleml1.h  |-  H  =  ( LHyp `  K
)
cdleml1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml1.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml1.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdleml2N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  E. s  e.  E  ( s `  ( U `  f
) )  =  ( V `  f ) )
Distinct variable groups:    E, s    K, s    R, s    T, s    U, s    V, s    W, s    f, s
Allowed substitution hints:    B( f, s)    R( f)    T( f)    U( f)    E( f)    H( f, s)    K( f)    V( f)    W( f)

Proof of Theorem cdleml2N
StepHypRef Expression
1 simp1 957 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 990 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  U  e.  E )
3 simp23 992 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  f  e.  T )
4 cdleml1.h . . . 4  |-  H  =  ( LHyp `  K
)
5 cdleml1.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
6 cdleml1.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
74, 5, 6tendocl 31295 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  f  e.  T
)  ->  ( U `  f )  e.  T
)
81, 2, 3, 7syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( U `  f )  e.  T
)
9 simp22 991 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  V  e.  E )
104, 5, 6tendocl 31295 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  f  e.  T
)  ->  ( V `  f )  e.  T
)
111, 9, 3, 10syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( V `  f )  e.  T
)
12 cdleml1.b . . 3  |-  B  =  ( Base `  K
)
13 cdleml1.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
1412, 4, 5, 13, 6cdleml1N 31504 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( U `  f
) )  =  ( R `  ( V `
 f ) ) )
154, 5, 13, 6cdlemk 31502 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U `
 f )  e.  T  /\  ( V `
 f )  e.  T )  /\  ( R `  ( U `  f ) )  =  ( R `  ( V `  f )
) )  ->  E. s  e.  E  ( s `  ( U `  f
) )  =  ( V `  f ) )
161, 8, 11, 14, 15syl121anc 1189 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  E. s  e.  E  ( s `  ( U `  f
) )  =  ( V `  f ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2593   E.wrex 2693    _I cid 4480    |` cres 4866   ` cfv 5440   Basecbs 13452   HLchlt 29879   LHypclh 30512   LTrncltrn 30629   trLctrl 30686   TEndoctendo 31280
This theorem is referenced by:  cdleml3N  31506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-iin 4083  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-undef 6529  df-riota 6535  df-map 7006  df-poset 14386  df-plt 14398  df-lub 14414  df-glb 14415  df-join 14416  df-meet 14417  df-p0 14451  df-p1 14452  df-lat 14458  df-clat 14520  df-oposet 29705  df-ol 29707  df-oml 29708  df-covers 29795  df-ats 29796  df-atl 29827  df-cvlat 29851  df-hlat 29880  df-llines 30026  df-lplanes 30027  df-lvols 30028  df-lines 30029  df-psubsp 30031  df-pmap 30032  df-padd 30324  df-lhyp 30516  df-laut 30517  df-ldil 30632  df-ltrn 30633  df-trl 30687  df-tendo 31283
  Copyright terms: Public domain W3C validator