Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml4N Unicode version

Theorem cdleml4N 30298
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b  |-  B  =  ( Base `  K
)
cdleml1.h  |-  H  =  ( LHyp `  K
)
cdleml1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml1.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml1.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml4N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Distinct variable groups:    E, s    K, s    R, s    T, s    U, s    V, s    W, s, g    B, g, s   
g, H, s    g, K    .0. , s    T, g    g, W
Allowed substitution hints:    R( g)    U( g)    E( g)    V( g)    .0. ( g)

Proof of Theorem cdleml4N
StepHypRef Expression
1 cdleml1.b . . . 4  |-  B  =  ( Base `  K
)
2 cdleml1.h . . . 4  |-  H  =  ( LHyp `  K
)
3 cdleml1.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3cdlemftr0 29887 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  f  =/=  (  _I  |`  B ) )
543ad2ant1 981 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. f  e.  T  f  =/=  (  _I  |`  B ) )
6 simp11 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 simp12l 1073 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  U  e.  E
)
8 simp12r 1074 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  V  e.  E
)
9 simp2 961 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  f  e.  T
)
10 simp3 962 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  f  =/=  (  _I  |`  B ) )
11 simp13l 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  U  =/=  .0.  )
12 simp13r 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  V  =/=  .0.  )
13 cdleml1.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
14 cdleml1.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
15 cdleml3.o . . . . 5  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
161, 2, 3, 13, 14, 15cdleml3N 30297 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
176, 7, 8, 9, 10, 11, 12, 16syl133anc 1210 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  )
)  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
1817rexlimdv3a 2640 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  -> 
( E. f  e.  T  f  =/=  (  _I  |`  B )  ->  E. s  e.  E  ( s  o.  U
)  =  V ) )
195, 18mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  ( U  =/=  .0.  /\  V  =/=  .0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517    e. cmpt 4017    _I cid 4241    |` cres 4628    o. ccom 4630   ` cfv 4638   Basecbs 13075   HLchlt 28670   LHypclh 29303   LTrncltrn 29420   trLctrl 29477   TEndoctendo 30071
This theorem is referenced by:  cdleml5N  30299
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-fal 1316  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-map 6707  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307  df-laut 29308  df-ldil 29423  df-ltrn 29424  df-trl 29478  df-tendo 30074
  Copyright terms: Public domain W3C validator